Ecometric analyses use the relationships between functional traits and the environment at the community level to quantitatively estimate past climatic and environmental variables at fossil sites. Hypsodonty (tooth crown height) in North American rodent and lagomorph (Glires) communities is correlated with mean annual temperature and annual precipitation. Here, we examine the community hypsodonty of African Glires to test if this relationship translates to a continent with more extreme climates and to quantify paleoprecipitation at important fossil sites. Categorical hypsodonty values were gathered from the literature and museum collections for 94 modern African taxa (88%). We used maximum likelihood to model the ecometric relationship between hypsodonty and annual precipitation. We then produced trait-based estimates of paleoprecipitation for 26 well sampled fossil localities from eastern Africa over the last 5.7 Ma. We confirmed other regional studies by identifying increasing aridity and decreasing annual precipitation (824 mm to 480 mm) in the Late Miocene of Kenya. From the Ethiopian Shungura Formation, we estimated temporal fluctuations in precipitation that correspond with the presence or absence of paleolakes and rivers. Small mammal community hypsodonty illustrates that east African communities have converged towards mesodont means and high standard deviations in response to climate change.
more »
« less
Assessing Impact of Domestic and Non-Native Species on Trait-Environment Relationships Using Hypsodonty and Precipitation Since the Late Pleistocene
Ecosystem function relies in part on aligned relationships between functional traits of animals and the environments in which they live. Studies of trait-environment relationships have largely focused on communities of native species, but domestic and non-native species also play a role in the functioning of modern ecosystems. We use ecometrics, or study of functional trait-environment relationships, to evaluate the impact of domestic and non-native species on community-level trait composition and its relationship with precipitation by comparing four community compositions: modern native, modern native plus domestic, modern native plus non-native, and late Pleistocene (0.126–0.0117 Ma). We integrate large and small herbivorous mammals into a single ecometric model of hypsodonty (i.e., tooth crown height) and annual precipitation (n=8439, r=-0.7, R2=0.4, p<0.001). We hypothesize: 1) ecometric models of modern native communities will differ from those for late Pleistocene communities, 2) inclusion of domestic species will align ecometric relationships with those from the late Pleistocene, 3) inclusion of non-native species will maintain ecometric relationships of modern native communities. We found modern communities of native species have lower hypsodonty values and higher precipitation estimates than late Pleistocene communities. Domestic species shift modern communities toward higher hypsodonty values and lower precipitation estimates like those in the late Pleistocene. Today’s domestics are mostly high-crowned grazing species representative of the fauna lost prior to the Holocene. Non-native species do not shift modern native trait composition or the associated precipitation estimates, illustrating the success of non-native species due to trait alignment with their new environments. Thus, conservation and restoration efforts should consider trait composition of whole communities because it provides unique information to measures of taxonomic composition.
more »
« less
- Award ID(s):
- 2124836
- PAR ID:
- 10539671
- Publisher / Repository:
- Bulletin of the Florida Museum of Natural History
- Date Published:
- Journal Name:
- Bulletin of the Florida Museum of Natural History
- Volume:
- 60
- Issue:
- 2
- ISSN:
- 2373-9991
- Page Range / eLocation ID:
- 116 to 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mammalian megafauna have been critical to the functioning of Earth’s biosphere for millions of years. However, since the Plio-Pleistocene, their biodiversity has declined concurrently with dramatic environmental change and hominin evolution. While these biodiversity declines are well-documented, their implications for the ecological function of megafaunal communities remain uncertain. Here, we adapt ecometric methods to evaluate whether the functional link between communities of herbivorous, eastern African megafauna and their environments (i.e., functional trait-environment relationships) was disrupted as biodiversity losses occurred over the past 7.4 Ma. Herbivore taxonomic and functional diversity began to decline during the Pliocene as open grassland habitats emerged, persisted, and expanded. In the mid-Pleistocene, grassland expansion intensified, and climates became more variable and arid. It was then that phylogenetic diversity declined, and the trait-environment relationships of herbivore communities shifted significantly. Our results divulge the varying implications of different losses in megafaunal biodiversity. Only the losses that occurred since the mid-Pleistocene were coincident with a disturbance to community ecological function. Prior diversity losses, conversely, occurred as the megafaunal species and trait pool narrowed towards those adapted to grassland environments.more » « less
-
Abstract AimWe investigate locomotor function in artiodactyls, represented by calcaneal gear ratio, as it relates to multiple environments. Using an ecometric approach, we develop a trait–environment model to investigate ecosystem‐level changes through time and to reconstruct past environments. We apply the trait–environment model to a case study of six sites in Kenya to evaluate changes over the past 100 years. LocationGlobal. MethodsLocomotor morphology was represented by calcaneal gear ratios measured as the overall length of a calcaneum divided by length of its in‐lever, that is calcaneal tuber. We collected calcaneal gear ratio measurements from skeletal specimens of 157 artiodactyl species in museum collections and used species’ spatial distributions to determine the composition of 47,420 communities globally. For 21,827 communities with three or more species of artiodactyls, we used maximum likelihood to model ecometric relationships between community‐level locomotor morphology and five environmental variables, including mean annual temperature, annual precipitation, elevation, vegetation cover and ecoregion province. ResultsCommunity mean gear ratios range from 1.43 to 1.56 (µ = 1.50). Mean gear ratios are highest in the tropical regions and lowest in the mid‐latitudes. Variance in mean calcaneal gear ratio is related to ecoregion division (68.6%), vegetation cover (63.5%) and precipitation (60.7%). In a case study of Kenyan sites, we demonstrate habitat homogenization patterns that match mammal community turnover patterns. Main conclusionsWith this ecometric framework, fossils of artiodactyl post‐crania can be used to assist in interpreting past ecoregion, vegetation cover and precipitation for a more comprehensive understanding of palaeoenvironment. These relationships between functional traits and environment will enable better models of biotic responses for conservation of functional diversity under changing environments.more » « less
-
We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.more » « less
-
Understanding the relationships between functional traits and environment is increasingly important for assessing ecosystem health and forecasting biotic responses to future environmental change. Taxon-free analyses of functional traits (ecometrics) allow for testing the performance of such traits through time, utilizing both the fossil record and paleoenvironmental proxies. Here, we test the role of body size as a functional trait with respect to climate, using turtles as a model system. We examine the influence of mass-specific metabolic rate as a functional factor in the sorting of body size with environmental temperature and investigate the utility of community body size composition as an ecometric correlated to climate variables. We then apply our results to the fossil record of the Plio-Pleistocene Shungura Formation in Ethiopia. Results show that turtle body sizes scale with mass-specific metabolic rate for larger taxa, but not for the majority of species, indicating that metabolism is not a primary driver of size. Body size ecometrics have stronger predictive power at continental than at global scales, but without a single, dominant predictive functional relationship. Application of ecometrics to the Shungura fossil record suggests that turtle paleocommunity ecometrics coarsely track independent paleoclimate estimates at local scales. We hypothesize that both human disruption and biotic interactions limit the ecometric fit of size to climate in this clade. Nonetheless, examination of the consistency of trait–environment relationships through deep and shallow time provides a means for testing anthropogenic influences on ecosystems.more » « less