Abstract We present machine‐learning interatomic potentials (MLIPs) for simulations of Si–C–O–H compounds. The MLIPs are constructed from moment tensor potentials (MTPs) and were trained to a library of configurations that included polysiloxane structures, hypothetical crystalline and amorphous SiCOH structures, and trajectories of Si–C–O–H systems obtained via ab initio molecular dynamic (aiMD) simulations at elevated temperatures. Passive, active, and hybrid learning strategies were implemented to develop the MLIPs. The MLIPs reproduce vibrational properties of polymers and SiCOH structures obtained from aiMD simulations, thus providing a tool to identify chemical units and distinct structural characteristics through their vibrational properties. Simulations of the polymer‐to‐ceramic transformation show the development of mixed tetrahedra in SiCO ceramics and align with experimental observations. Million‐atom simulations for several nanoseconds highlight the precipitation of graphitic nanosheets from a carbon‐rich SiCO precursor. Atomistic simulations with the MLIPs deliver details of chemical reaction mechanisms during the pyrolysis of polysiloxanes, including methane abstraction and Kumada‐like rearrangements that transform the siloxane backbone. While the MLIPs still leave room for systematic improvement, they deliver simulations with “density functional theory (DFT)‐like” quality at low and high temperatures.
more »
« less
This content will become publicly available on December 1, 2025
Machine learned interatomic potentials for ternary carbides trained on the AFLOW database
Abstract Large-density functional theory (DFT) databases are a treasure trove of energies, forces, and stresses that can be used to train machine-learned interatomic potentials for atomistic modeling. Herein, we employ structural relaxations from the AFLOW database to train moment tensor potentials (MTPs) for four carbide systems: CHfTa, CHfZr, CMoW, and CTaTi. The resulting MTPs are used to relax ~6300 random symmetric structures, and are subsequently improved via active learning to generate robust potentials (RP) that can relax a wide variety of structures, and accurate potentials (AP) designed for the relaxation of low-energy systems. This protocol is shown to yield convex hulls that are indistinguishable from those predicted by AFLOW for the CHfTa, CHfZr, and CTaTi systems, and in the case of the CMoW system to predict thermodynamically stable structures that are not found within AFLOW, highlighting the potential of the employed protocol within crystal structure prediction. Relaxation of over three hundred (Mo1−xWx)C stoichiometry crystals first with the RP then with the AP yields formation enthalpies that are in excellent agreement with those obtained via DFT.
more »
« less
- Award ID(s):
- 2022040
- PAR ID:
- 10539678
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.more » « less
-
Abstract Vibrational spectroscopy enables critical insight into the structural and dynamic properties of molecules. Presently, the majority of theoretical approaches to spectroscopy employ wavefunction‐basedab initioor density functional methods that rely on the harmonic approximation. This approximation breaks down for large molecules with strongly anharmonic bonds or for molecules with large internuclear separations. An alternative to these methods involves generating molecular anharmonic potential energy surfaces (potentials) and using them to extrapolate the vibrational frequencies. This study examines the efficacy of density functional theory (DFT) and the correlation consistent Composite Approach (ccCA) in generating anharmonic frequencies from potentials of small main group molecules. Vibrational self‐consistent field Theory (VSCF) and post‐VSCF methods were used to calculate the fundamental frequencies of these molecules from their potentials. Functional choice, basis set selection, and mode‐coupling are also examined as factors in influencing accuracy. The absolute deviations for the calculated frequencies using potentials at the ccCA level of theory were lower than the potentials at the DFT level. With DFT resulting in bending modes that are better described than those of ccCA, a multilevel DFT:ccCA approach where DFT potentials are used for single vibrational mode potentials and ccCA is used for vibrational mode‐mode couplings can be utilized for larger polyatomic systems. The frequencies obtained with this multilevel approach using VCIPSI‐PT2 were closer to experimental frequencies than the scaled harmonic frequencies, indicating the success of utilizing post‐VSCF methods to generate more accurate representations of computed infrared spectra.more » « less
-
A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic–inorganic layered perovskites that adopt then= 1 Ruddlesden–Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from thea/2 +b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about theaand/orbaxes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase ϕ-tilts about theaand/orbaxes and θ-tilts (rotations) about thecaxis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts.more » « less
-
The redox potential is a powerful thermodynamic and kinetic tool used to predict numerous chemical and biochemical mechanisms. However, despite the improving predictive power of density functional theory (DFT), chemically accurate theoretical redox potentials are often difficult to achieve with DFT. For example, calculated redox potentials are sensitive to density functional choice and often fall short of the desired accuracy. Thus, ranges of errors for computed redox potentials between different density functionals can become quite large. The current study presents a cost-effective protocol that utilizes effective error cancellation schemes in order to accurately predict the redox potentials of a wide range of organic molecules. This computational protocol, called CBH-Redox, is an extension of the connectivity-based hierarchy (CBH) method, and produces thermochemical data with near-G4 accuracy. Herein, we test the CBH-Redox protocol against both experimental and G4 reference values and compare these results to DFT alone. Considering 46 C, O, N, F, Cl, and S atom-containing molecules, when using the CBH-Redox correction scheme, the MAEs for all eight density functionals tested are within the 0.09 V target accuracy versus both experiment and G4. Moreover, CBH-Redox achieves an impressive accuracy, with a MAE of 0.05 V or below when compared to G4 for six of the eight density functionals tested. In addition, when the CBH correction is applied, the error range across all functionals tested decreases from 0.12 V to about 0.05 V versus G4, and from 0.13 V to 0.04 V versus experiment.more » « less
An official website of the United States government
