skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cognitive complexity explains processing asymmetry in judgments of similarity versus difference
Human judgments of similarity and difference are sometimes asymmetrical, with the former being more sensitive than the latter to relational overlap, but the theoretical basis for this asymmetry remains unclear. We test an explanation based on the type of information used to make these judgments (relations versus features) and the comparison process itself (similarity versus difference). We propose that asymmetries arise from two aspects of cognitive complexity that impact judgments of similarity and difference: processing relations between entities is more cognitively demanding than processing features of individual entities, and comparisons assessing difference are more cognitively complex than those assessing similarity. In Experiment 1 we tested this hypothesis for both verbal comparisons between word pairs, and visual comparisons between sets of geometric shapes. Participants were asked to select one of two options that was either more similar to or more different from a standard. On unambiguous trials, one option was unambiguously more similar to the standard; on ambiguous trials, one option was more featurally similar to the standard, whereas the other was more relationally similar. Given the higher cognitive complexity of processing relations and of assessing difference, we predicted that detecting relational difference would be particularly demanding. We found that participants (1) had more difficulty detecting relational difference than they did relational similarity on unambiguous trials, and (2) tended to emphasize relational information more when judging similarity than when judging difference on ambiguous trials. The latter finding was replicated using more complex story stimuli (Experiment 2). We showed that this pattern can be captured by a computational model of comparison that weights relational information more heavily for similarity than for difference judgments.  more » « less
Award ID(s):
2022369
PAR ID:
10539725
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Cognitive Psychology
Volume:
151
Issue:
C
ISSN:
0010-0285
Page Range / eLocation ID:
101661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to recognize and make inductive inferences based on relational similarity is fundamental to much of human higher cognition. However, relational similarity is not easily defined or measured, which makes it difficult to determine whether individual differences in cognitive capacity or semantic knowledge impact relational processing. In two experiments, we used a multi-arrangement task (previously applied to individual words or objects) to efficiently assess similarities between word pairs instantiating various abstract relations. Experiment 1 established that the method identifies word pairs expressing the same relation as more similar to each other than to those expressing different relations. Experiment 2 extended these results by showing that relational similarity measured by the multi-arrangement task is sensitive to more subtle distinctions. Word pairs instantiating the same specific subrelation were judged as more similar to each other than to those instantiating different subrelations within the same general relation type. In addition, Experiment 2 found that individual differences in both fluid intelligence and crystalized verbal intelligence correlated with differentiation of relation similarity judgments. 
    more » « less
  2. Computational models of verbal analogy and relational similarity judgments can employ different types of vector representations of word meanings (embeddings) generated by machine-learning algorithms. An important question is whether human-like relational processing depends on explicit representations of relations (i.e., representations separable from those of the concepts being related), or whether implicit relation representations suffice. Earlier machine-learning models produced static embeddings for individual words, identical across all contexts. However, more recent Large Language Models (LLMs), which use transformer architectures applied to much larger training corpora, are able to produce contextualized embeddings that have the potential to capture implicit knowledge of semantic relations. Here we compare multiple models based on different types of embeddings to human data concerning judgments of relational similarity and solutions of verbal analogy problems. For two datasets, a model that learns explicit representations of relations, Bayesian Analogy with Relational Transformations (BART), captured human performance more successfully than either a model using static embeddings (Word2vec) or models using contextualized embeddings created by LLMs (BERT, RoBERTa, and GPT-2). These findings support the proposal that human thinking depends on representations that separate relations from the concepts they relate. 
    more » « less
  3. null (Ed.)
    Intertemporal choices involve assessing options with different reward amounts available at different time delays. The similarity approach to intertemporal choice focuses on judging how similar amounts and delays are. Yet we do not fully understand the cognitive process of how these judgments are made. Here, we use machine-learning algorithms to predict similarity judgments to (1) investigate which algorithms best predict these judgments, (2) assess which predictors are most useful in predicting participants’ judgments, and (3) determine the minimum number of judgments required to accurately predict future judgments. We applied eight algorithms to similarity judgments for reward amount and time delay made by participants in two data sets. We found that neural network, random forest, and support vector machine algorithms generated the highest out-of-sample accuracy. Though neural networks and support vector machines offer little clarity in terms of a possible process for making similarity judgments, random forest algorithms generate decision trees that can mimic the cognitive computations of human judgment making. We also found that the numerical difference between amount values or delay values was the most important predictor of these judgments, replicating previous work. Finally, the best performing algorithms such as random forest can make highly accurate predictions of judgments with relatively small sample sizes (~ 15), which will help minimize the numbers of judgments required to extrapolate to new value pairs. In summary, machine-learning algorithms provide both theoretical improvements to our understanding of the cognitive computations involved in similarity judgments and intertemporal choices as well as practical improvements in designing better ways of collecting data. 
    more » « less
  4. Assessing similarity between design ideas is an inherent part of many design evaluations to measure novelty. In such evaluation tasks, humans excel at making mental connections among diverse knowledge sets and scoring ideas on their uniqueness. However, their decisions on novelty are often subjective and difficult to explain. In this paper, we demonstrate a way to uncover human judgment of design idea similarity using two dimensional idea maps. We derive these maps by asking humans for simple similarity comparisons of the form “Is idea A more similar to idea B or to idea C?” We show that these maps give insight into the relationships between ideas and help understand the domain. We also propose that the novelty of ideas can be estimated by measuring how far items are on these maps. We demonstrate our methodology through the experimental evaluations on two datasets of colored polygons (known answer) and milk frothers (unknown answer) sketches. We show that these maps shed light on factors considered by raters in judging idea similarity. We also show how maps change when less data is available or false/noisy ratings are provided. This method provides a new direction of research into deriving ground truth novelty metrics by combining human judgments and computational methods. 
    more » « less
  5. Assessing similarity between design ideas is an inherent part of many design evaluations to measure novelty. In such evaluation tasks, humans excel at making mental connections among diverse knowledge sets to score ideas on their uniqueness. However, their decisions about novelty are often subjective and difficult to explain. In this paper, we demonstrate a way to uncover human judgment of design idea similarity using two-dimensional (2D) idea maps. We derive these maps by asking participants for simple similarity comparisons of the form “Is idea A more similar to idea B or to idea C?” We show that these maps give insight into the relationships between ideas and help understand the design domain. We also propose that novel ideas can be identified by finding outliers on these idea maps. To demonstrate our method, we conduct experimental evaluations on two datasets—colored polygons (known answer) and milk frother sketches (unknown answer). We show that idea maps shed light on factors considered by participants in judging idea similarity and the maps are robust to noisy ratings. We also compare physical maps made by participants on a white-board to their computationally generated idea maps to compare how people think about spatial arrangement of design items. This method provides a new direction of research into deriving ground truth novelty metrics by combining human judgments and computational methods. 
    more » « less