skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sonar target representation using two-dimensional Gabor wavelet features
This paper introduces a feature extraction technique that identifies highly informative features from sonar magnitude spectra for automated target classification. The approach involves creating feature representations through convolution of a two-dimensional Gabor wavelet and acoustic color magnitudes to capture elastic waves. This feature representation contains extracted localized features in the form of Gabor stripes, which are representative of unique targets and are invariant of target aspect angle. Further processing removes non-informative features through a threshold-based culling. This paper presents an approach that begins connecting model-based domain knowledge with machine learning techniques to allow interpretation of the extracted features while simultaneously enabling robust target classification. The relative performance of three supervised machine learning classifiers, specifically a support vector machine, random forest, and feed-forward neural network are used to quantitatively demonstrate the representations' informationally rich extracted features. Classifiers are trained and tested with acoustic color spectrograms and features extracted using the algorithm, interpreted as stripes, from two public domain field datasets. An increase in classification performance is generally seen, with the largest being a 47% increase from the random forest tree trained on the 1–31 kHz PondEx10 data, suggesting relatively small datasets can achieve high classification accuracy if model-cognizant feature extraction is utilized.  more » « less
Award ID(s):
1808463
PAR ID:
10539912
Author(s) / Creator(s):
; ;
Editor(s):
Michalopolou, Zoi-Heleni
Publisher / Repository:
Journal of Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
148
Issue:
4
ISSN:
0001-4966
Page Range / eLocation ID:
2061 to 2072
Subject(s) / Keyword(s):
signal processing features information Note: This paper while topically different in the application (sonar) from the NSF project focus, acknowledged the NSF grant due to its early role in training the lead student author (Bernice Kubicek) in classic concepts in signal processing theory, data and information science, and especially understanding the role of signal peaks and signal features as carrying relevant information, which is broadly foundational to the work reported here.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery. 
    more » « less
  2. Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance. 
    more » « less
  3. Abstract The biodiversity crisis necessitates spatially extensive methods to monitor multiple taxonomic groups for evidence of change in response to evolving environmental conditions. Programs that combine passive acoustic monitoring and machine learning are increasingly used to meet this need. These methods require large, annotated datasets, which are time‐consuming and expensive to produce, creating potential barriers to adoption in data‐ and funding‐poor regions. Recently released pre‐trained avian acoustic classification models provide opportunities to reduce the need for manual labelling and accelerate the development of new acoustic classification algorithms through transfer learning. Transfer learning is a strategy for developing algorithms under data scarcity that uses pre‐trained models from related tasks to adapt to new tasks.Our primary objective was to develop a transfer learning strategy using the feature embeddings of a pre‐trained avian classification model to train custom acoustic classification models in data‐scarce contexts. We used three annotated avian acoustic datasets to test whether transfer learning and soundscape simulation‐based data augmentation could substantially reduce the annotated training data necessary to develop performant custom acoustic classifiers. We also conducted a sensitivity analysis for hyperparameter choice and model architecture. We then assessed the generalizability of our strategy to increasingly novel non‐avian classification tasks.With as few as two training examples per class, our soundscape simulation data augmentation approach consistently yielded new classifiers with improved performance relative to the pre‐trained classification model and transfer learning classifiers trained with other augmentation approaches. Performance increases were evident for three avian test datasets, including single‐class and multi‐label contexts. We observed that the relative performance among our data augmentation approaches varied for the avian datasets and nearly converged for one dataset when we included more training examples.We demonstrate an efficient approach to developing new acoustic classifiers leveraging open‐source sound repositories and pre‐trained networks to reduce manual labelling. With very few examples, our soundscape simulation approach to data augmentation yielded classifiers with performance equivalent to those trained with many more examples, showing it is possible to reduce manual labelling while still achieving high‐performance classifiers and, in turn, expanding the potential for passive acoustic monitoring to address rising biodiversity monitoring needs. 
    more » « less
  4. This paper evaluates an innovative framework for spoken dialect density prediction on children's and adults' African American English. A speaker's dialect density is defined as the frequency with which dialect-specific language characteristics occur in their speech. Rather than treating the presence or absence of a target dialect in a user's speech as a binary decision, instead, a classifier is trained to predict the level of dialect density to provide a higher degree of specificity in downstream tasks. For this, self-supervised learning representations from HuBERT, handcrafted grammar-based features extracted from ASR transcripts, prosodic features, and other feature sets are experimented with as the input to an XGBoost classifier. Then, the classifier is trained to assign dialect density labels to short recorded utterances. High dialect density level classification accuracy is achieved for child and adult speech and demonstrated robust performance across age and regional varieties of dialect. Additionally, this work is used as a basis for analyzing which acoustic and grammatical cues affect machine perception of dialect. 
    more » « less
  5. GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions. 
    more » « less