skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open-Set Graph Domain Adaptation via Separate Domain Alignment
Domain adaptation has become an attractive learning paradigm, as it can leverage source domains with rich labels to deal with classification tasks in an unlabeled target domain. A few recent studies develop domain adaptation approaches for graph-structured data. In the case of node classification task, current domain adaptation methods only focus on the closed-set setting, where source and target domains share the same label space. A more practical assumption is that the target domain may contain new classes that are not included in the source domain. Therefore, in this paper, we introduce a novel and challenging problem for graphs, i.e., open-set domain adaptive node classification, and propose a new approach to solve it. Specifically, we develop an algorithm for efficient knowledge transfer from a labeled source graph to an unlabeled target graph under a separate domain alignment (SDA) strategy, in order to learn discriminative feature representations for the target graph. Our goal is to not only correctly classify target nodes into the known classes, but also classify unseen types of nodes into an unknown class. Experimental results on real-world datasets show that our method outperforms existing methods on graph domain adaptation.  more » « less
Award ID(s):
2316306
PAR ID:
10539934
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
8
ISSN:
2159-5399
Page Range / eLocation ID:
9142 to 9150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In traditional graph learning tasks, such as node classification, learning is carried out in a closed-world setting where the number of classes and their training samples are provided to help train models, and the learning goal is to correctly classify unlabeled nodes into classes already known. In reality, due to limited labeling capability and dynamic evolving of networks, some nodes in the networks may not belong to any existing/seen classes, and therefore cannot be correctly classified by closed-world learning algorithms. In this paper, we propose a new open-world graph learning paradigm, where the learning goal is to not only classify nodes belonging to seen classes into correct groups, but also classify nodes not belonging to existing classes to an unseen class. The essential challenge of the openworld graph learning is that (1) unseen class has no labeled samples, and may exist in an arbitrary form different from existing seen classes; and (2) both graph feature learning and prediction should differentiate whether a node may belong to an existing/seen class or an unseen class. To tackle the challenges, we propose an uncertain node representation learning approach, using constrained variational graph autoencoder networks, where the label loss and class uncertainty loss constraints are used to ensure that the node representation learning are sensitive to unseen class. As a result, node embedding features are denoted by distributions, instead of deterministic feature vectors. By using a sampling process to generate multiple versions of feature vectors, we are able to test the certainty of a node belonging to seen classes, and automatically determine a threshold to reject nodes not belonging to seen classes as unseen class nodes. Experiments on real-world networks demonstrate the algorithm performance, comparing to baselines. Case studies and ablation analysis also show the rationale of our design for open-world graph learning. 
    more » « less
  2. Unsupervised domain adaptation for semantic segmentation has been intensively studied due to the low cost of the pixel-level annotation for synthetic data. The most common approaches try to generate images or features mimicking the distribution in the target domain while preserving the semantic contents in the source domain so that a model can be trained with annotations from the latter. However, such methods highly rely on an image translator or feature extractor trained in an elaborated mechanism including adversarial training, which brings in extra complexity and instability in the adaptation process. Furthermore, these methods mainly focus on taking advantage of the labeled source dataset, leaving the unlabeled target dataset not fully utilized. In this paper, we propose a bidirectional style-induced domain adaptation method, called BiSIDA, that employs consistency regularization to efficiently exploit information from the unlabeled target domain dataset, requiring only a simple neural style transfer model. BiSIDA aligns domains by not only transferring source images into the style of target images but also transferring target images into the style of source images to perform high-dimensional perturbation on the unlabeled target images, which is crucial to the success in applying consistency regularization in segmentation tasks. Extensive experiments show that our BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-CityScapes. Code and pretrained style transfer model are available at: https://github.com/wangkaihong/BiSIDA. 
    more » « less
  3. In the problem of domain adaptation for binary classification, the learner is presented with labeled examples from a source domain, and must correctly classify unlabeled examples from a target domain, which may differ from the source. Previous work on this problem has assumed that the performance measure of interest is the expected value of some loss function. We study a Neyman-Pearson-like criterion and argue that, for this optimality criterion, stronger domain adaptation results are possible than what has previously been established. In particular, we study a class of domain adaptation problems that generalizes both the covariate shift assumption and a model for feature-dependent label noise, and establish optimal classification on the target domain despite not having access to labelled data from this domain. 
    more » « less
  4. Classification models trained on data from one source may underperform when tested on data acquired from different sources due to shifts in data distributions, which limit the models’ generalizability in real-world applications. Domain adaptation methods proposed to align such shifts in source-target data distributions use contrastive learning or adversarial techniques with or without internal cluster alignment. The intracluster alignment is performed using standalone k-means clustering on image embedding. This paper introduces a novel deep clustering approach to align cluster distributions in tandem with adapting source and target data distributions. Our method learns and aligns a mixture of cluster distributions in the unlabeled target domain with those in the source domain in a unified deep representation learning framework. Experiments demonstrate that intra-cluster alignment improves classification accuracy in nine out of ten domain adaptation examples. These improvements range between 0.3% and 2.0% compared to k-means clustering of embedding and between 0.4% and 5.8% compared to methods without class-level alignment. Unlike current domain adaptation methods, the proposed cluster distribution-based deep learning provides a quantitative and explainable measure of distribution shifts in data domains. We have publicly shared the source code for the algorithm implementation. 
    more » « less
  5. Domain adaptation (DA) addresses the real-world image classification problem of discrepancy between training (source) and testing (target) data distributions. We propose an unsupervised DA method that considers the presence of only unlabelled data in the target do- main. Our approach centers on finding matches between samples of the source and target domains. The matches are obtained by treating the source and target domains as hyper-graphs and carrying out a class-regularized hyper-graph matching using first-, second- and third-order similarities between the graphs. We have also developed a computationally efficient algorithm by initially selecting a subset of the samples to construct a graph and then developing a customized optimization routine for graph-matching based on Conditional Gradient and Alternating Direction Multiplier Method. This allows the proposed method to be used widely. We also performed a set of experiments on standard object recognition datasets to validate the effectiveness of our framework over previous approaches. 
    more » « less