This content will become publicly available on July 1, 2025
- Award ID(s):
- 2247484
- PAR ID:
- 10539940
- Publisher / Repository:
- PETS
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2024
- Issue:
- 3
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 202 to 223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The transfer learning pretraining-finetuning paradigm has revolutionized the natural language processing field yielding state-of the art results in several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.more » « less
-
Language models (LMs) are pretrained to imitate internet text, including content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, and more. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the trade-off between alignment and capabilities of pretrained LMs. We find a Pareto optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores given by a reward model. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.more » « less
-
Language models (LMs) are pretrained to imitate text from large and diverse datasets that contain content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, among others. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.more » « less
-
Machine learning deployment on edge devices has faced challenges such as computational costs and privacy issues. Membership inference attack (MIA) refers to the attack where the adversary aims to infer whether a data sample belongs to the training set. In other words, user data privacy might be compromised by MIA from a well-trained model. Therefore, it is vital to have defense mechanisms in place to protect training data, especially in privacy-sensitive applications such as healthcare. This paper exploits the implications of quantization on privacy leakage and proposes a novel quantization method that enhances the resistance of a neural network against MIA. Recent studies have shown that model quantization leads to resistance against membership inference attacks. Existing quantization approaches primarily prioritize performance and energy efficiency; we propose a quantization framework with the main objective of boosting the resistance against membership inference attacks. Unlike conventional quantization methods whose primary objectives are compression or increased speed, our proposed quantization aims to provide defense against MIA. We evaluate the effectiveness of our methods on various popular benchmark datasets and model architectures. All popular evaluation metrics, including precision, recall, and F1-score, show improvement when compared to the full bitwidth model. For example, for ResNet on Cifar10, our experimental results show that our algorithm can reduce the attack accuracy of MIA by 14%, the true positive rate by 37%, and F1-score of members by 39% compared to the full bitwidth network. Here, reduction in true positive rate means the attacker will not be able to identify the training dataset members, which is the main goal of the MIA.more » « less
-
Abstract Clinical notes present a wealth of information for applications in the clinical domain, but heterogeneity across clinical institutions and settings presents challenges for their processing. The clinical natural language processing field has made strides in overcoming domain heterogeneity, while pretrained deep learning models present opportunities to transfer knowledge from one task to another. Pretrained models have performed well when transferred to new tasks; however, it is not well understood if these models generalize across differences in institutions and settings within the clinical domain. We explore if institution or setting specific pretraining is necessary for pretrained models to perform well when transferred to new tasks. We find no significant performance difference between models pretrained across institutions and settings, indicating that clinically pretrained models transfer well across such boundaries. Given a clinically pretrained model, clinical natural language processing researchers may forgo the time-consuming pretraining step without a significant performance drop.