skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review and synthesis of expert perspectives on user attribute and profile definitions for fashion recommendation
A key obstacle in personalised fashion recommendations is the challenge of capturing user physical attributes at a large scale, which limits exclusively computational methods (like machine learning) to readily available attributes whose influence on recommendation accuracy is variable. Expert advice is a potential means of identifying influential user attributes. However, individual experts often disagree or offer conflicting advice. Thus, identifying areas where expert advice is or isn’t consistent, in the context of user attributes and profiling is critical. Here, we characterise the breadth of expert definitions of user attributes and profiles through an exhaustive assessment of 156 years of advice literature. Expert definitions of body colouring, shape, and personality attributes are extracted and compared. The range of attribute-value relationships and profile definitions in each domain is described, and coherence among authors for each domain is discussed.  more » « less
Award ID(s):
1715200
PAR ID:
10540030
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
International Journal of Fashion Design, Technology and Education
Volume:
17
Issue:
2
ISSN:
1754-3266
Page Range / eLocation ID:
202 to 213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Towards the vision of building artificial intelligence systems that can assist with our everyday life, we introduce a proof of concept for a social media privacy "cyborg" which can locally and privately monitor a person's published content and offer advice or warnings when their privacy is at stake. The idea of a cyborg can be more general, as a separate local entity with its own computational resources, that can automatically perform several online tasks on our behalf. For this demonstration, we assume an attacker that can successfully infer user attributes, solely based on what the user has published (topic-based inference). We focus on Social Media privacy and specifically on the issue of exposing sensitive user-attributes, like location, or race, through published content. We built a privacy cyborg that can monitor a user's posted topics and automatically warn them in real time when a sensitive attribute is at risk of being exposed. 
    more » « less
  2. Introducing interpretability and reasoning into Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) analysis is challenging given the complexity of gigapixel slides. Traditionally MIL interpretability is limited to identifying salient regions deemed pertinent for downstream tasks offering little insight to the end-user (pathologist) regarding the rationale behind these selections. To address this we propose Self-Interpretable MIL (SI-MIL) a method intrinsically designed for interpretability from the very outset. SI-MIL employs a deep MIL framework to guide an interpretable branch grounded on handcrafted pathological features facilitating linear predictions. Beyond identifying salient regions SI-MIL uniquely provides feature-level interpretations rooted in pathological insights for WSIs. Notably SI-MIL with its linear prediction constraints challenges the prevalent myth of an inevitable trade-off between model interpretability and performance demonstrating competitive results compared to state-of-the-art methods on WSI-level prediction tasks across three cancer types. In addition we thoroughly benchmark the local- and global-interpretability of SI-MIL in terms of statistical analysis a domain expert study and desiderata of interpretability namely user-friendliness and faithfulness. 
    more » « less
  3. We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress. 
    more » « less
  4. Modern recognition systems require large amounts of supervision to achieve accuracy. Adapting to new domains requires significant data from experts, which is onerous and can become too expensive. Zero-shot learning requires an annotated set of attributes for a novel category. Annotating the full set of attributes for a novel category proves to be a tedious and expensive task in deployment. This is especially the case when the recognition domain is an expert domain. We introduce a new field-guide-inspired approach to zero-shot annotation where the learner model interactively asks for the most useful attributes that define a class. We evaluate our method on classification benchmarks with attribute annotations like CUB, SUN, and AWA2 and show that our model achieves the performance of a model with full annotations at the cost of significantly fewer number of annotations. Since the time of experts is precious, decreasing annotation cost can be very valuable for real-world deployment. 
    more » « less
  5. Abstract This work investigates the online machine learning problem of prediction with expert advice in an adversarial setting through numerical analysis of, and experiments with, a related partial differential equation. The problem is a repeated two-person game involving decision-making at each step informed by$$n$$experts in an adversarial environment. The continuum limit of this game over a large number of steps is a degenerate elliptic equation whose solution encodes the optimal strategies for both players. We develop numerical methods for approximating the solution of this equation in relatively high dimensions ($$n\leq 10$$) by exploiting symmetries in the equation and the solution to drastically reduce the size of the computational domain. Based on our numerical results we make a number of conjectures about the optimality of various adversarial strategies, in particular about the non-optimality of the COMB strategy. 
    more » « less