This paper addresses the problem of generating coverage paths-that is, paths that pass within some sensor footprint of every point in an environment-for vehicles with Dubins motion constraints. We extend previous work that solves this coverage problem as a traveling salesman problem (TSP) by introducing a practical heuristic algorithm to reduce runtime while maintaining near-optimal path length. Furthermore, we show that generating an optimal coverage path is NP-hard by reducing from the Exact Cover problem, which provides justification for our algorithm's conversion of Dubins coverage instances to TSP instances. Extensive experiments demonstrate that the algorithm does indeed produce length paths comparable to optimal in significantly less time.
more »
« less
Revisiting Data Collection in Robotic Sensor Networks: A Budget-Constrained Traveling Salesman Perspective
We focus on robotic sensor networks (RSNs), wherein mobile data collectors or robots are dispatched into the sensor field to collect data from the sensor nodes, and study a new algorithmic problem called battery-constrained data collection in RSNs (BC-DCR). Given an RSN of sensor nodes with varying numbers of sensory data packets to be collected and a robot with limited battery power, the goal of the BC-DCR is to dispatch the robot into the sensor field to collect the maximum number of data packets before it runs out of battery power and returns to the depot for recharging. Although extensive research has been conducted to achieve various performance objectives of data collection in RSNs, not much work has focused on the robot’s limited battery power. It is critical to consider the robot’s limited battery power to optimize the data-collecting performance of a large-scale RSN. We show that at the core of the BC-DCR is a new variation of the classic traveling salesman problem called the Budget-Constrained Traveling Salesman Problem (BC-TSP), which has not been adequately solved. We design an Integer Linear Programming (ILP)–based optimal algorithm and a time- efficient iterative greedy algorithm to solve the BC-TSP. Via extensive simulations using real measurements of battery power and mobility models of robots, we show that a) our algorithms outperform the existing work by collecting 29.1% more packets with the same battery power of the robots and b) our BC-TSP- based approach achieves 32.02% more network lifetime of the RSN compared to the existing approach.
more »
« less
- Award ID(s):
- 2240517
- PAR ID:
- 10540043
- Publisher / Repository:
- IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2024)
- Date Published:
- ISSN:
- 10.1109/MASS58611.2023.00038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Facet-defining inequalities of the symmetric traveling salesman problem (TSP) polytope play a prominent role in both polyhedral TSP research and state-of-the-art TSP solvers. In this paper, we introduce a new class of facet-defining inequalities, the circlet inequalities. These inequalities were first conjectured in Gutekunst and Williamson [Gutekunst SC, Williamson DP (2019) Characterizing the integrality gap of the subtour LP for the circulant traveling salesman problem. SIAM J. Discrete Math. 33(4):2452–2478] when studying the circulant TSP, and they provide a bridge between polyhedral TSP research and number-theoretic investigations of Hamiltonian cycles stemming from a conjecture from Marco Buratti in 2007. The circlet inequalities exhibit circulant symmetry by placing the same weight on all edges of a given length; our main proof exploits this symmetry to prove the validity of the circlet inequalities. We then show that the circlet inequalities are facet-defining and compute their strength following Goemans [Goemans MX (1995) Worst-case comparison of valid inequalities for the TSP. Math. Programming 69:335–349]; they achieve the same worst case strength as the similarly circulant crown inequalities of Naddef and Rinaldi [Naddef D, Rinaldi G (1992) The crown inequalities for the symmetric traveling salesman polytope. Math. Oper. Res. 17(2):308–326] but are generally stronger. Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program [Grant DGE-1650441] and by the National Science Foundation Division of Computing and Communications Foundations [Grant CCF-1908517].more » « less
-
We aim to preserve a large amount of data generated insidebase station-less sensor networks(BSNs) while considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the data preservation process. We refer to the problem as DPP:datapreservationproblem in the BSN. Previous research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources and maximize their benefit. In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation. For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.more » « less
-
Abstract This paper proposed a collaborative neurodynamic optimization (CNO) method to solve traveling salesman problem (TSP). First, we construct a Hopfield neural network (HNN) with $$n \times n$$ n × n neurons for the n cities. Second, to ensure the convergence of continuous HNN (CHNN), we reformulate TSP to satisfy the convergence condition of CHNN and solve TSP by CHNN. Finally, a population of CHNNs is used to search for local optimal solutions of TSP and the globally optimal solution is obtained using particle swarm optimization. Experimental results show the effectiveness of the CNO approach for solving TSP.more » « less
-
In large scale coverage operations, such as marine exploration or aerial monitoring, single robot approaches are not ideal, as they may take too long to cover a large area. In such scenarios, multi-robot approaches are preferable. Furthermore, several real world vehicles are non-holonomic, but can be modeled using Dubins vehicle kinematics. This paper focuses on environmental monitoring of aquatic environments using Autonomous Surface Vehicles (ASVs). In particular, we propose a novel approach for solving the problem of complete coverage of a known environment by a multi-robot team consisting of Dubins vehicles. It is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-complete problems. As such, we present two heuristics methods based on a variant of the traveling salesman problem-k-TSP-formulation and clustering algorithms that efficiently solve the problem. The proposed methods are tested both in simulations to assess their scalability and with a team of ASVs operating on a 200 km 2 lake to ensure their applicability in real world.more » « less
An official website of the United States government

