skip to main content


Title: Multi-robot Dubins Coverage with Autonomous Surface Vehicles
In large scale coverage operations, such as marine exploration or aerial monitoring, single robot approaches are not ideal, as they may take too long to cover a large area. In such scenarios, multi-robot approaches are preferable. Furthermore, several real world vehicles are non-holonomic, but can be modeled using Dubins vehicle kinematics. This paper focuses on environmental monitoring of aquatic environments using Autonomous Surface Vehicles (ASVs). In particular, we propose a novel approach for solving the problem of complete coverage of a known environment by a multi-robot team consisting of Dubins vehicles. It is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-complete problems. As such, we present two heuristics methods based on a variant of the traveling salesman problem-k-TSP-formulation and clustering algorithms that efficiently solve the problem. The proposed methods are tested both in simulations to assess their scalability and with a team of ASVs operating on a 200 km 2 lake to ensure their applicability in real world.  more » « less
Award ID(s):
1637876
NSF-PAR ID:
10085491
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
2373 to 2379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches. 
    more » « less
  2. Physical sampling of water for off-site analysis is necessary for many applications like monitoring the quality of drinking water in reservoirs, understanding marine ecosystems, and measuring contamination levels in fresh-water systems. In this paper, the focus is on algorithms for efficient measurement and sampling using a multi-robot, data-driven, water-sampling behavior, where autonomous surface vehicles plan and execute water sampling using the chlorophyll density as a cue for plankton-rich water samples. We use two Autonomous Surface Vehicles (ASVs), one equipped with a water quality sensor and the other equipped with a water-sampling apparatus. The ASV with the sensor acts as an explorer, measuring and building a spatial map of chlorophyll density in the given region of interest. The ASV equipped with the water sampling apparatus makes decisions in real time on where to sample the water based on the suggestions made by the explorer robot. We evaluate the system in the context of measuring chlorophyll distributions. We do this both in simulation based on real geophysical data from MODIS measurements, and on real robots in a water reservoir. We demonstrate the effectiveness of the proposed approach in several ways including in terms of mean error in the interpolated data as a function of distance traveled. 
    more » « less
  3. In this work we address the System-of-Systems reassembling operation of a marsupial team comprising a hybrid Unmanned Aerial Vehicle and a Legged Locomotion robot, relying solely on vision-based systems and assisted by Deep Learning. The target application domain is that of large-scale field surveying operations under the presence of wireless communication disruptions. While most real-world field deployments of multi-robot systems assume some degree of wireless communication to coordinate key tasks such as multi-agent rendezvous, a desirable feature against unrecoverable communication failures or radio degradation due to jamming cyber-attacks is the ability for autonomous systems to robustly execute their mission with onboard perception. This is especially true for marsupial air / ground teams, wherein landing onboard the ground robot is required. We propose a pipeline that relies on Deep Neural Network-based Vehicle-to-Vehicle detection based on aerial views acquired by flying at typical altitudes for Micro Aerial Vehicle-based real-world surveying operations, such as near the border of the 400ft Above Ground Level window. We present the minimal computing and sensing suite that supports its execution onboard a fully autonomous micro-Tiltrotor aircraft which detects, approaches, and lands onboard a Boston Dynamics Spot legged robot. We present extensive experimental studies that validate this marsupial aerial / ground robot’s capacity to safely reassemble while in the airborne scouting phase without the need for wireless communication. 
    more » « less
  4. Autonomous survey and aerial photogrammetry applications require solving a path planning problem that ensures sensor coverage over a specified area. In this work, we provide a multi-robot path planning method that can obtain this coverage over an arbitrary area of interest. We extend our previous method, path optimization for population counting with overhead robotic networks (POPCORN), by a divide-and-conquer scheme, split and link tiles (SALT), which drastically decreases the time needed for route planning. These POPCORN instances can be computed in parallel and combined with SALT in a scalable manner to produce coverage paths over very large areas of interest. To demonstrate this algorithm’s capabilities, we implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of the Cape Crozier Adélie penguin rookery on Ross Island, Antarctica, one of the largest Adélie penguin colonies in the world. The colony, which contains over 300,000 nesting pairs and spans over 2 km, was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. We also have deployed our survey system at several islets at Mono Lake, California, to survey a California gull colony as well as at a 2000-acre ranch in Marin, California. We provide this survey path planning tool as an open-source software package named wadl. 
    more » « less
  5. As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We investigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack? Can we develop an online monitoring framework to give rigorous assurances on the safety of such human-robot interactions? We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring and decision making scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.1s). These techniques are both tested in simulation and integrated on a test vehicle with a complete in-house autonomous stack, demonstrating safe interaction in real-world experiments. 
    more » « less