skip to main content

Title: Multi-robot Dubins Coverage with Autonomous Surface Vehicles
In large scale coverage operations, such as marine exploration or aerial monitoring, single robot approaches are not ideal, as they may take too long to cover a large area. In such scenarios, multi-robot approaches are preferable. Furthermore, several real world vehicles are non-holonomic, but can be modeled using Dubins vehicle kinematics. This paper focuses on environmental monitoring of aquatic environments using Autonomous Surface Vehicles (ASVs). In particular, we propose a novel approach for solving the problem of complete coverage of a known environment by a multi-robot team consisting of Dubins vehicles. It is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-complete problems. As such, we present two heuristics methods based on a variant of the traveling salesman problem-k-TSP-formulation and clustering algorithms that efficiently solve the problem. The proposed methods are tested both in simulations to assess their scalability and with a team of ASVs operating on a 200 km 2 lake to ensure their applicability in real world.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
2373 to 2379
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches. 
    more » « less
  2. In this work we address the System-of-Systems reassembling operation of a marsupial team comprising a hybrid Unmanned Aerial Vehicle and a Legged Locomotion robot, relying solely on vision-based systems and assisted by Deep Learning. The target application domain is that of large-scale field surveying operations under the presence of wireless communication disruptions. While most real-world field deployments of multi-robot systems assume some degree of wireless communication to coordinate key tasks such as multi-agent rendezvous, a desirable feature against unrecoverable communication failures or radio degradation due to jamming cyber-attacks is the ability for autonomous systems to robustly execute their mission with onboard perception. This is especially true for marsupial air / ground teams, wherein landing onboard the ground robot is required. We propose a pipeline that relies on Deep Neural Network-based Vehicle-to-Vehicle detection based on aerial views acquired by flying at typical altitudes for Micro Aerial Vehicle-based real-world surveying operations, such as near the border of the 400ft Above Ground Level window. We present the minimal computing and sensing suite that supports its execution onboard a fully autonomous micro-Tiltrotor aircraft which detects, approaches, and lands onboard a Boston Dynamics Spot legged robot. We present extensive experimental studies that validate this marsupial aerial / ground robot’s capacity to safely reassemble while in the airborne scouting phase without the need for wireless communication. 
    more » « less
  3. This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area. 
    more » « less
  4. As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We investigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack? Can we develop an online monitoring framework to give rigorous assurances on the safety of such human-robot interactions? We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring and decision making scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.1s). These techniques are both tested in simulation and integrated on a test vehicle with a complete in-house autonomous stack, demonstrating safe interaction in real-world experiments. 
    more » « less
  5. This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the creation and design of policies for multi-robot coordination. Although current approaches to multi-robot coordination have been successful in structured, well-understood environments, they have not been successful in unstructured, uncertain environments, such as disaster response. Although robot hardware has advanced significantly in the past decade, the way we solve multi-robot problems has not. Even with significant advances in the field of multi-robot systems, the same problem-solving paradigm has remained: assumptions are made to simplify the problem, and a solution is optimized for those assumptions and deployed to the entire team. This results in brittle solutions that prove incapable if the original assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which uses a diverse set of control policies that work together synergistically within the same team of robots. Such an approach will make multi-robot systems more robust in unstructured and uncertain environments, such as in disaster response, environmental monitoring, and military applications, and allow multi-robot systems to extend beyond the highly structured and highly controlled environments where they are successful today. 
    more » « less