skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data
Abstract Recent technologies such asspatial transcriptomics, enable the measurement of gene expressions at the single-cell level along with the spatial locations of these cells in the tissue. Spatial clustering of the cells provides valuable insights into the understanding of the functional organization of the tissue. However, most such clustering methods involve some dimension reduction that leads to a loss of the inherent dependency structure among genes at any spatial location in the tissue. This destroys valuable insights of gene co-expression patterns apart from possibly impacting spatial clustering performance. In spatial transcriptomics, the matrix-variate gene expression data, along with spatial coordinates of the single cells, provides information on both gene expression dependencies and cell spatial dependencies through its row and column covariances. In this work, we propose a joint Bayesian approach to simultaneously estimate these gene and spatial cell correlations. These estimates provide data summaries for downstream analyses. We illustrate our method with simulations and analysis of several real spatial transcriptomic datasets. Our work elucidates gene co-expression networks as well as clear spatial clustering patterns of the cells. Furthermore, our analysis reveals that downstream spatial-differential analysis may aid in the discovery of unknown cell types from known marker genes.  more » « less
Award ID(s):
2112943
PAR ID:
10513148
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Clustering spatial-resolved gene expression is an essential analysis to reveal gene activities in the underlying morphological context by their functional roles. However, conventional clustering analysis does not consider gene expression co-localizations in tissue for detecting spatial expression patterns or functional relationships among the genes for biological interpretation in the spatial context. In this article, we present a convolutional neural network (CNN) regularized by the graph of protein–protein interaction (PPI) network to cluster spatially resolved gene expression. This method improves the coherence of spatial patterns and provides biological interpretation of the gene clusters in the spatial context by exploiting the spatial localization by convolution and gene functional relationships by graph-Laplacian regularization. Results In this study, we tested clustering the spatially variable genes or all expressed genes in the transcriptome in 22 Visium spatial transcriptomics datasets of different tissue sections publicly available from 10× Genomics and spatialLIBD. The results demonstrate that the PPI-regularized CNN constantly detects gene clusters with coherent spatial patterns and significantly enriched by gene functions with the state-of-the-art performance. Additional case studies on mouse kidney tissue and human breast cancer tissue suggest that the PPI-regularized CNN also detects spatially co-expressed genes to define the corresponding morphological context in the tissue with valuable insights. Availability and implementation Source code is available at https://github.com/kuanglab/CNN-PReg. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Seeds, which provide a major source of calories for humans, are a unique stage of a flowering plant’s lifecycle. During seed germination the embryo reactivates rapidly and goes through major developmental transitions to become a seedling. This requires extensive and complex spatiotemporal coordination of cell and tissue activity. Existing gene expression profiling methods, such as laser capture microdissection followed by RNA-seq and single-cell RNA7 seq, suffer from either low throughput or the loss of spatial information about the cells analysed. Spatial transcriptomics methods couple high throughput analysis of gene expression simultaneously with the ability to record the spatial location of each individual region analysed. We developed a spatial transcriptomics workflow for germinating barley grain to better understand the spatiotemporal control of gene expression within individual seed cell types. More than 14,000 genes were differentially regulated across 0, 1, 3, 6 and 24 hours after imbibition. This approach enabled us to observe that many functional categories displayed specific spatial expression patterns that could be resolved at a sub-tissue level. Individual aquaporin gene family members, important for water and ion transport, had specific spatial expression patterns over time, as well as genes related to cell wall modification, membrane transport and transcription factors. Using spatial autocorrelation algorithms, we were able to identify auxin transport genes that had increasingly focused expression within subdomains of the embryo over germination time, suggestive of a role in establishment of the embryo axis. Together, our data provides an unprecedented spatially resolved cellular map for barley grain germination and specific genes to target for functional genomics to define cellular restricted processes in tissues during germination. The data can be viewed at https://spatial.latrobe.edu.au/. 
    more » « less
  3. Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integration. We offer an integrated analysis of the spatial location and gene expression profiles of cells to determine their identity. We propose scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering to cluster high-dimensional gene expression and low-dimensional location data. We show that, under multiple scenarios, including the cases where there is a small number of genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an existing method that uses a hidden Markov random field to encode cell location and gene expression data for cell type identification. 
    more » « less
  4. Spatially resolved scRNA-seq (sp-scRNA-seq) technologies provide the potential to comprehensively profile gene expression patterns in tissue context. However, the development of computational methods lags behind the advances in these technologies, which limits the fulfillment of their potential. In this study, we develop a deep learning approach for clustering sp-scRNA-seq data, named Deep Spatially constrained Single-cell Clustering (DSSC). In this model, we integrate the spatial information of cells into the clustering process in two steps: (1) the spatial information is encoded by using a graphical neural network model, and (2) cell-to-cell constraints are built based on the spatial expression pattern of the marker genes and added in the model to guide the clustering process. Then, a deep embedding clustering is performed on the bottleneck layer of autoencoder by Kullback–Leibler (KL) divergence along with the learning of feature representation. DSSC is the first model that can use information from both spatial coordinates and marker genes to guide cell/spot clustering. Extensive experiments on both simulated and real data sets show that DSSC boosts clustering performance significantly compared with the state-of-the-art methods. It has robust performance across different data sets with various cell type/tissue organization and/or cell type/tissue spatial dependency. We conclude that DSSC is a promising tool for clustering sp-scRNA-seq data. 
    more » « less
  5. Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease. 
    more » « less