Abstract MotivationMillions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to develop computational methods to accurately predict protein function to fill the gap. Even though many methods have been developed to use protein sequences as input to predict function, much fewer methods leverage protein structures in protein function prediction because there was lack of accurate protein structures for most proteins until recently. ResultsWe developed TransFun—a method using a transformer-based protein language model and 3D-equivariant graph neural networks to distill information from both protein sequences and structures to predict protein function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM) via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms several state-of-the-art methods, indicating that the language model and 3D-equivariant graph neural networks are effective methods to leverage protein sequences and structures to improve protein function prediction. Combining TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy. Availability and implementationThe source code of TransFun is available at https://github.com/jianlin-cheng/TransFun.
more »
« less
Improving protein function prediction by learning and integrating representations of protein sequences and function labels
Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew.
more »
« less
- Award ID(s):
- 2308699
- PAR ID:
- 10540109
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics Advances
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2635-0041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Domains are functional and structural units of proteins that govern various biological functions performed by the proteins. Therefore, the characterization of domains in a protein can serve as a proper functional representation of proteins. Here, we employ a self-supervised protocol to derive functionally consistent representations for domains by learning domain-Gene Ontology (GO) co-occurrences and associations. The domain embeddings we constructed turned out to be effective in performing actual function prediction tasks. Extensive evaluations showed that protein representations using the domain embeddings are superior to those of large-scale protein language models in GO prediction tasks. Moreover, the new function prediction method built on the domain embeddings, named Domain-PFP, substantially outperformed the state-of-the-art function predictors. Additionally, Domain-PFP demonstrated competitive performance in the CAFA3 evaluation, achieving overall the best performance among the top teams that participated in the assessment.more » « less
-
Abstract MotivationNucleic acid binding proteins (NABPs) play critical roles in various and essential biological processes. Many machine learning-based methods have been developed to predict different types of NABPs. However, most of these studies have limited applications in predicting the types of NABPs for any given protein with unknown functions, due to several factors such as dataset construction, prediction scope and features used for training and testing. In addition, single-stranded DNA binding proteins (DBP) (SSBs) have not been extensively investigated for identifying novel SSBs from proteins with unknown functions. ResultsTo improve prediction accuracy of different types of NABPs for any given protein, we developed hierarchical and multi-class models with machine learning-based methods and a feature extracted from protein language model ESM2. Our results show that by combining the feature from ESM2 and machine learning methods, we can achieve high prediction accuracy up to 95% for each stage in the hierarchical approach, and 85% for overall prediction accuracy from the multi-class approach. More importantly, besides the much improved prediction of other types of NABPs, the models can be used to accurately predict single-stranded DBPs, which is underexplored. Availability and implementationThe datasets and code can be found at https://figshare.com/projects/Prediction_of_nucleic_acid_binding_proteins_using_protein_language_model/211555.more » « less
-
Abstract Advances in genome sequencing and annotation have eased the difficulty of identifying new gene sequences. Predicting the functions of these newly identified genes remains challenging. Genes descended from a common ancestral sequence are likely to have common functions. As a result, homology is widely used for gene function prediction. This means functional annotation errors also propagate from one species to another. Several approaches based on machine learning classification algorithms were evaluated for their ability to accurately predict gene function from non‐homology gene features. Among the eight supervised classification algorithms evaluated, random‐forest‐based prediction consistently provided the most accurate gene function prediction. Non‐homology‐based functional annotation provides complementary strengths to homology‐based annotation, with higher average performance in Biological Process GO terms, the domain where homology‐based functional annotation performs the worst, and weaker performance in Molecular Function GO terms, the domain where the accuracy of homology‐based functional annotation is highest. GO prediction models trained with homology‐based annotations were able to successfully predict annotations from a manually curated “gold standard” GO annotation set. Non‐homology‐based functional annotation based on machine learning may ultimately prove useful both as a method to assign predicted functions to orphan genes which lack functionally characterized homologs, and to identify and correct functional annotation errors which were propagated through homology‐based functional annotations.more » « less
-
Abstract Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and naïve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.more » « less