skip to main content


This content will become publicly available on May 29, 2025

Title: Lensed Type Ia Supernova “Encore” at z = 2: The First Instance of Two Multiply Imaged Supernovae in the Same Host Galaxy
Abstract

A bright (mF150W,AB= 24 mag),z= 1.95 supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called “Requiem,” and therefore the new SN is named “Encore.” This makes the MACS J0138.0−2155 cluster the first known system to produce more than one multiply imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a ∼10 yr window to be ≈3%. These observations have the potential to yield a Hubble constant (H0) measurement with ∼10% precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of ∼2030, providing an unprecedented baseline for time-delay cosmography.

 
more » « less
Award ID(s):
2308051
NSF-PAR ID:
10540165
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
967
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present an analysis of 102 Type Ia supernovae (SNe Ia) in nearby (z< 0.1), x-ray-selected galaxy clusters. This is the largest such sample to date and is based on archival data primarily from ZTF and ATLAS. We divide our SNe Ia into an inner cluster sample projected withinr500of the cluster center and an outer cluster sample projected betweenr500and 2r500. We compare these to field samples of SNe Ia at similar redshifts in both quiescent and star-forming host galaxies. Based on SALT3 fits to the light curves, we find that the inner cluster SNe Ia have a higher fraction of fast-evolving objects (SALT3x1< −1) than the outer cluster or field quiescent samples. This implies an intrinsically different population of SNe Ia occurs in inner cluster environments, beyond known correlations based on host galaxy alone. Our cluster samples show a strongly bimodalx1distribution with a fast-evolving component that dominates the inner cluster objects (≳75%) but is just a small fraction of SNe Ia in field star-forming galaxies (≲10%). We do not see strong evidence for variations in the color (SALT3c) distributions among the samples and find only minor differences in SN Ia standardization parameters and Hubble residuals. We suggest that the age of the stellar population drives the observed distributions, with the oldest populations nearly exclusively producing fast-evolving SNe Ia.

     
    more » « less
  2. ABSTRACT

    The Reionization Cluster Survey imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (≳5σ) caustic crossing events, in line with expectations from semi-analytical calculations but in contrast to what may be naively expected from previous detections of some bright events or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse SNe – three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z ∼ 0.6–0.7. The other two are likely Ia – both of them previously known, one probably in a cluster galaxy and one behind it at z ≃ 2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.

     
    more » « less
  3. Abstract

    The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshiftszhost< 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, andsBV.

     
    more » « less
  4. Abstract

    We present the James Webb Space Telescope(JWST) discovery of SN 2023adsy, a transient object located in a host galaxy JADES-GS+53.13485−27.82088 with a host spectroscopic redshift of 2.903 ± 0.007. The transient was identified in deep (JWST)/NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADES) program. Photometric and spectroscopic follow-up with NIRCam and NIRSpec, respectively, confirm the redshift and yield UV-NIR light-curve, NIR color, and spectroscopic information all consistent with a Type Ia classification. Despite its classification as a likely SN Ia, SN 2023adsy is both fairly red (c∼ 0.9) despite a host galaxy with low extinction and has a high Caiivelocity (19,000 ± 2000 km s−1) compared to the general population of SNe Ia. While these characteristics are consistent with some Ca-rich SNe Ia, particularly SN 2016hnk, SN 2023adsy is intrinsically brighter than the low-zCa-rich population. Although such an object is too red for any low-zcosmological sample, we apply a fiducial standardization approach to SN 2023adsy and find that the SN 2023adsy luminosity distance measurement is in excellent agreement (≲1σ) with ΛCDM. Therefore unlike low-zCa-rich SNe Ia, SN 2023adsy is standardizable and gives no indication that SN Ia standardized luminosities change significantly with redshift. A larger sample of distant SNe Ia is required to determine if SN Ia population characteristics at highztruly diverge from their low-zcounterparts and to confirm that standardized luminosities nevertheless remain constant with redshift.

     
    more » « less
  5. Abstract

    Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-zestimates are expected to be accurate toσΔz/(1+z)∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-zs on the measurement of the dark energy equation of statewis up to Δw∼ 0.01–0.02. With real data, we measure a difference inwwhen using the redMaGiC photo-zs versus the spec-zs of Δw= 0.005. Finally, we discuss how SNe in redMaGiC galaxies appear to comprise a more standardizable population, due to a weaker relation between color and luminosity (β) compared to the DES-3YR population by ∼5σ. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.

     
    more » « less