skip to main content


Title: A state-of-the-art digital factory integrating digital twin for laser additive and subtractive manufacturing processes
This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

 
more » « less
Award ID(s):
1937128
PAR ID:
10540219
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Emerald
Date Published:
Journal Name:
Rapid Prototyping Journal
Volume:
29
Issue:
10
ISSN:
1355-2546
Page Range / eLocation ID:
2061 to 2097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital Twin (DT) is one of the key enabling technologies for realizing the promise of Smart Manufacturing (SM) and Industry 4.0 to improve production systems operation. Driven by the generation and analysis of high volume data coming from interconnected cyber and physical spaces, DTs are real-time digital images of physical systems, processes or products that help evaluate and improve business performance. This paper proposes a novel DT architecture for the real- time monitoring and evaluation of large-scale SM systems. An application to a manufacturing flow-shop is presented to illustrate the usefulness of the proposed methodology. 
    more » « less
  2. Purpose

    The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control.

    Design/methodology/approach

    This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN.

    Findings

    This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%.

    Practical implications

    Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM.

    Originality/value

    To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.

     
    more » « less
  3. Abstract

    The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace.

     
    more » « less
  4. Abstract

    Digital Twins (DTs) are increasingly recognized for their potential to improve efficiency and decision-making in various domains of the built environment. Despite their promise, challenges like cost, complexity, interoperability, and data integration remain. This paper introduces a novel interactive visual analytics system that tackles these issues, using a case study of simulating class distribution and campus building capacity at a large public university. The system leverages enrollment data, converting it into a spatial-temporal format for interactive exploration and analysis of class distribution and resource utilization. Through case studies, we demonstrate the system's effectiveness, adaptability, and real-world applicability, highlighting its role in practical DT implementation for built environments.

     
    more » « less
  5. Abstract

    The use of digital twins (DTs) has proliferated across various fields and industries, with a recent surge in the healthcare sector. The concept of digital twin for health (DT4H) holds great promise to revolutionize the entire healthcare system, including management and delivery, disease treatment and prevention, and health well-being maintenance, ultimately improving human life. The rapid growth of big data and continuous advancement in data science (DS) and artificial intelligence (AI) have the potential to significantly expedite DT research and development by providing scientific expertise, essential data, and robust cybertechnology infrastructure. Although various DT initiatives have been underway in the industry, government, and military, DT4H is still in its early stages. This paper presents an overview of the current applications of DTs in healthcare, examines consortium research centers and their limitations, and surveys the current landscape of emerging research and development opportunities in healthcare. We envision the emergence of a collaborative global effort among stakeholders to enhance healthcare and improve the quality of life for millions of individuals worldwide through pioneering research and development in the realm of DT technology.

     
    more » « less