skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Digital Twinning and Optimization of Manufacturing Process Flows
Abstract The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace.  more » « less
Award ID(s):
2302834
PAR ID:
10507487
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
145
Issue:
11
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less
  2. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less
  3. Ma, J (Ed.)
    Perhaps the most fundamental model in synthetic and sys- tems biology for inferring pathways in metabolic reaction networks is a metabolic factory: a system of reactions that starts from a set of source compounds and produces a set of target molecules, while conserving or not depleting intermediate metabolites. Finding a shortest factory—that minimizes a sum of real-valued weights on its reactions to infer the most likely pathway—is NP-complete. The current state-of-the-art for shortest factories solves a mixed-integer linear program with a major drawback: it requires the user to set a critical parameter, where too large a value can make optimal solutions infeasible, while too small a value can yield degenerate solutions due to numerical error. We present the first robust algorithm for optimal factories that is both parameter-free (relieving the user from determining a parameter setting) and degeneracy-free (guaranteeing it finds an optimal nondegen- erate solution). We also give for the first time a complete characterization of the graph-theoretic structure of shortest factories via cuts of hyper- graphs that reveals two important classes of degenerate solutions which were overlooked and potentially output by the prior state-of-the-art. In addition we settle the relationship between the two established pathway models of hyperpaths and factories by proving that hyperpaths are actu- ally a subclass of factories. Comprehensive experiments over all instances from the standard metabolic reaction databases in the literature demon- strate our algorithm is fast in practice, quickly finding optimal factories in large real-world networks containing thousands of reactions. A preliminary implementation of our algorithm for robust optimal factories in a new tool called Freeia is available free for research use at http://freeia.cs.arizona.edu. 
    more » « less
  4. Rapid advances in Digital Twin (DT) provide an unprecedented opportunity to derive data-enabled intelligence for smart manufacturing. However, traditional DT is more concerned about real-time data streaming, dashboard visualization, and predictive analytics, but focuses less on multi-agent intelligence. This limitation hampers the development of agentic intelligence for decentralized decision making in complex manufacturing environments. Therefore, this paper presents a Cognitive Digital Twin (CDT) approach for multi-objective production scheduling through decentralized, collaborative multi-agent learning. First, we propose to construct models of heterogeneous agents (e.g., machines, jobs, automated guided vehicles, and automated storage and retrieval systems) that interact with physical and digital twins. Second, multi-objective optimization is embedded in CDT to align production schedules with diverse and often conflicting objectives such as throughput, task transition efficiency, and workload balance. Third, we develop a multi-agent learning approach to enable decentralized decision making in response to unexpected disruptions and dynamic demands. Each agent operates independently and collaboratively with cognitive capabilities, including perception, learning, and reasoning, to optimize the individual agentic objective while contributing to overarching system-wide goals. Finally, the proposed CDT is evaluated and validated with experimental studies in a learning factory environment. Experimental results demonstrate that CDT improves operational performance in terms of task allocation, resource utilization, and system resilience compared to traditional centralized approaches. This initial study of CDT highlights the potential to bring multi-agent cognitive intelligence into next-generation smart manufacturing. 
    more » « less
  5. This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations. Design/methodology/approachThis study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques. FindingsA comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions. Originality/valueBased on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain. 
    more » « less