skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Photovoltaic Cell-Powered Backscatter Communication System: A Compact Design
The paper outlines the design, prototyping, and simulation processes involved in creating a compact radio frequency (RF) backscatter communication system, powered by Organic Photovoltaic (OPV) cells. This system is integral to a mine rescue operation, particularly useful in scenarios where miners are trapped due to accidents. In such situations, a rescue drone, equipped with a searchlight and the discussed communication system, takes the lead in the assisted escape mission for miners. The drone establishes duplex communication with the miners through a battery-free, wearable transponder device. Initial experiments employing a RF backscatter testbed - which utilizes both software-defined radios and OPV cells - were conducted. These preliminary tests were crucial for assessing the conditions necessary for successful backscatter communication, as well as for evaluating the energy-harvesting performance of the system. Findings from these experiments indicate that the device can operate battery-free, powered solely by OPV cells, even under low illuminance levels of less than 75 lux. In the pursuit of crafting the device in a compact form, a co-design initiative was launched. This effort focused on developing a meander dipole antenna in tandem with the OPV cells, targeting a resonant frequency of 912 MHz. Simulation results, obtained from ANSYS HFSS, revealed significant changes in antenna impedance and S parameters yet minimal impact on the radiation pattern of the antenna with the integration of the layered OPV structure.  more » « less
Award ID(s):
2431272
PAR ID:
10540260
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-7281-9054-9
Page Range / eLocation ID:
5652 to 5657
Subject(s) / Keyword(s):
Backscatter communications energy harvesting wireless power transfer wearable device wireless communications testbed measurements.
Format(s):
Medium: X
Location:
Denver, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a sensing system comprising a large network of tiny, battery-less, Radio Frequency (RF)-powered sensors that use backscatter communication. The sensors use an entirely passive technique to 'sense' the parameters of the wireless channel between themselves. Since the material properties influence RF channels, this fine-grain sensing can uncover multiple material properties both at a large scale and fine spatial resolution. In this paper, we study the feasibility of the proposed passive technique for monitoring parameters of material in which the sensors are embedded. We performed a set of experiments where the sensor-to-sensor wireless channel parameters are well-defined using physics-based modeling, and we compared the theoretical and experimentally obtained values. For some material parameters of interest, like humidity or strain, the relationship with the observed wireless channel parameters have to be modeled relying on data-driven approaches. The initial experiments show an observable difference in the sensor-to-sensor channel phase with variation in the applied weights. 
    more » « less
  2. null (Ed.)
    Backscatter communication has been a popular choice in low-power/battery-free sensor nodes development. However, the effect of RF source to receiver distance on the operating range of this communication system has not been modeled accurately. In this paper, we propose a model for a bistatic backscatter system coverage map based on the receiver selectivity, receiver sensitivity, and geometric placement of the receiver, RF source, and the tag. To verify our proposed model and simulations, we perform an experiment using a low-cost commercial BLE receiver and a custom-designed BLE backscatter tag. We also show that the receiver selectivity might depend on the interference level, and present measurement results to signify how this dependence relates the system bit error rate to the RF excitation power. 
    more » « less
  3. Realizing the vision of ubiquitous battery-free sensing has proven to be challenging, mainly due to the practical energy and range limitations of current wireless communication systems. To address this, we design the first wide-area and scalable backscatter network with multiple receivers (RX) and transmitters (TX) base units to communicate with battery-free sensor nodes. Our system circumvents the inherent limitations of backscatter systems--including the limited coverage area, frequency-dependent operability, and sensor node limitations in handling network tasks--by introducing several coordination techniques between the base units starting from a single RX-TX pair to networks with many RX and TX units. We build low-cost RX and TX base units and battery-free sensor nodes with multiple sensing modalities and evaluate the performance of the MultiScatter system in various deployments. Our evaluation shows that we can successfully communicate with battery-free sensor nodes across 23400 square feet of a two-floor educational complex using 5 RX and 20 TX units, costing $569. Also, we show that the aggregated throughput of the backscatter network increases linearly as the number of RX units and the network coverage grows. 
    more » « less
  4. Battery-free sensors, such as RFIDs, are annually attached to billions of items including pharmaceutical drugs, clothes, and manufacturing parts. The fundamental challenge with battery-free sensors is that they are only reliable at short distances of tens of centimeters to few meters. As a result, today’s systems for communicating with and localizing battery-free sensors are crippled by the limited range. To overcome this challenge, this paper presents RFly, a system that leverages drones as relays for battery-free networks. RFly delivers two key innovations. It introduces the first full-duplex relay for battery-free networks. The relay can seamlessly integrate with a deployed RFID infrastructure, and it preserves phase and timing characteristics of the forwarded packets. RFly also develops the first RF-localization algorithm that can operate through a mobile relay. We built a hardware prototype of RFly’s relay into a custom PCB circuit and mounted it on a Parrot Bebop drone. Our experimental evaluation demonstrates that RFly enables communication with commercial RFIDs at over 50 m. Moreover, its through-relay localization algorithm has a median accuracy of 19 centimeters. These results demonstrate that RFly provides powerful primitives for communication and localization in battery-free networks. 
    more » « less
  5. Radio frequency (RF) signals are frequently used in emerging quantum applications due to their spin state manipulation capability. Efficient coupling of RF signals into a particular quantum system requires the utilization of carefully designed and fabricated antennas. Nitrogen vacancy (NV) defects in diamond are commonly utilized platforms in quantum sensing experiments with the optically detected magnetic resonance (ODMR) method, where an RF antenna is an essential element. We report on the design and fabrication of high efficiency coplanar RF antennas for quantum sensing applications. Single and double ring coplanar RF antennas were designed with −37 dB experimental return loss at 2.87 GHz, the zero-field splitting frequency of the negatively charged NV defect in diamond. The efficiency of both antennas was demonstrated in magnetic field sensing experiments with NV color centers in diamond. An RF amplifier was not needed, and the 0 dB output of a standard RF signal generator was adequate to run the ODMR experiments due to the high efficiency of the RF antennas. 
    more » « less