Abstract The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−xOx(x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs. 
                        more » 
                        « less   
                    
                            
                            Investigation of Key Electronic States in Layered Mixed Chalcogenides With a d 0 Transition Metal as Li‐Ion Cathodes
                        
                    
    
            Abstract Lithium‐rich transition metal chalcogenides are witnessing a revival as candidates for Li‐ion cathode materials, spurred by the boost in their capacities from transcending conventional redox processes based on cationic states and tapping into additional chalcogenide states. A particularly striking case is Li2TiS3‐ySey, which features a d0metal. While the end members are expectedly inactive, substantial capacities are measured when both Se and S are present. Using X‐ray absorption spectroscopy, it is shown that the electronic structure of Li2TiS3‐ySeyis not a simple combination of the end members. The data confirm previous hypotheses that, in Li2TiS2.4Se0.6, this behavior is underpinned by concurrent and reversible redox of only S and Se, and identify key electronic states. Moreover, wavelet transforms of the extended X‐ray absorption fine structure provide direct evidence of the formation of short Se–Se units upon charging. The study uncovers the underpinnings of this intriguing reactivity and highlights the richness of redox chemistry in complex solids. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2118020
- PAR ID:
- 10540327
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 46
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.more » « less
- 
            Abstract Li‐rich layered chalcogenides have recently led to better understanding of the anionic redox process and its associated high capacity while providing ways to overcome its practical limitations of voltage fade and irreversibility. This study reports on the feasibility of triggering anionic activity in Li2TiS3, through anionic substitution (Se for S) or cationic substitution (Fe for Ti). Herein, the chalcogenide chemical space is further explored to prepare mono‐substituted Li1.7Ti0.85Mn0.45Ch3(Ch = S/Se) and doubly substituted cationic and anionic phases (Li1.7Ti0.85Fe0.45S3‐zSez) which crystallize either in the O3‐ or O1‐type structures depending upon substituents. All series show a bell‐shape capacity variation as function of the transition metal (TM) substitution degree with values up to 240 mAh g−1. For specific compositions, a structural O3 to O1 phase transition is observed upon Li removal, which is not reversible upon Li re‐insertion due to kinetic limitations and negatively affects long‐term cycling performance. Density functional theory (DFT) calculations confirm the O3/O1 relative stability along the different series and point subtle electronic differences in the TM‐doping, rationalizing the structural and electrochemical behaviors of these phases upon cycling. These findings provide further insights into the link between structural and electronic stability, which is of key importance for designing chalcogenide‐based anionic redox compounds.more » « less
- 
            Abstract This study presents a new material, “HxCrS2” (denotes approximate composition) formed by proton‐exchange of NaCrS2which has a measured capacity of 728 mAh g−1with significant improvements to capacity retention, sustaining over 700 mAh g−1during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. HxCrS2exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton‐exchange offers a route to materials such as HxCrS2which provide fast diffusion and high capacities for sodium‐ion batteries.more » « less
- 
            The layered transition metal chalcogenides MCrX2 (M = Ag, Cu; X = S, Se, Te) are of interest for energy storage because chemically Li-substituted analogs were reported as superionic Li+ conductors. The coexistence of fast ion transport and reducible transition metal and chalcogen elements suggests that this family may offer multifunctional capability for electrochemical storage. Here, we investigate the electrochemical reduction of AgCrSe2 and CuCrSe2 in non-aqueous Li- and Na-ion electrolytes using electrochemical measurements coupled with ex situ characterization (scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy). Both compounds delivered high initial specific capacities (~ 560 mAh/g), corresponding to 6.64 and 5.73 Li+/e- per formula unit for AgCrSe2 and CuCrSe2, respectively. We attribute this difference to distinct reduction pathways: 1) Li+ intercalation to form LiCrSe2 and extruded Ag or Cu, 2) conversion of LiCrSe2 to Li2Se, and 3) formation of an Ag-Li alloy at the lowest potential, operative only in AgCrSe2. Consistent with this proposed mechanism, step 3 was absent during reduction of AgCrSe2 in a Na-ion electrolyte since Ag does not alloy with Na. These results demonstrate the complex reduction chemistry of MCrX2 in the presence of alkali ions, providing insights into the use of MCrX2 materials as alkali ion superionic conductors or high capacity electrodes for lithium or sodium-ion type batteries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
