skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metals in Star-forming Galaxies with KCWI. I. Methodology and First Results on the Abundances of Iron, Magnesium, and Oxygen
Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10Malong with two quiescent galaxies atM*∼ 108.8Mobserved with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10Mis primarily driven by starvation.  more » « less
Award ID(s):
2233781
PAR ID:
10540329
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 182
Size(s):
Article No. 182
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present determinations of the gas-phase and stellar metallicities of a sample of 65 star-forming galaxies at $$z \simeq 3.5$$ using rest-frame far-ultraviolet (FUV) spectroscopy from the VANDELS survey in combination with follow-up rest-frame optical spectroscopy from VLT/KMOS and Keck/MOSFIRE. We infer gas-phase oxygen abundances ($$Z_{\mathrm{g}}$$; tracing O/H) via strong optical nebular lines and stellar iron abundances ($$Z_{\star }$$; tracing Fe/H) from full spectral fitting to the FUV continuum. Our sample spans the stellar mass range $$8.5 \lt \mathrm{log}(M_{\star }/\mathrm{M}_{\odot }) \lt 10.5$$ and shows clear evidence for both a stellar and gas-phase mass-metallicity relation (MZR). We find that our O and Fe abundance estimates both exhibit a similar mass-dependence, such that $$\mathrm{Fe/H}\propto M_{\star }^{0.30\pm 0.11}$$ and $$\mathrm{O/H}\propto M_{\star }^{0.32\pm 0.09}$$. At fixed $$M_{\star }$$ we find that, relative to their solar values, O abundances are systematically larger than Fe abundances (i.e. α-enhancement). We estimate an average enhancement of $$\mathrm{(O/Fe)} = 2.65 \pm 0.16 \times \mathrm{(O/Fe)_\odot }$$ which appears to be independent of $$M_{\star }$$. We employ analytic chemical evolution models to place a constraint on the strength of galactic-level outflows via the mass-outflow factor ($$\eta$$). We show that outflow efficiencies that scale as $$\eta \propto M_{\star }^{-0.32}$$ can simultaneously explain the functional form of of the stellar and gas-phase MZR, as well as the degree of α-enhancement at fixed Fe/H. Our results add further evidence to support a picture in which α-enhanced abundance ratios are ubiquitous in high-redshift star-forming galaxies, as expected for young systems whose interstellar medium is primarily enriched by core-collapse supernovae. 
    more » « less
  2. The chemical composition of galaxies has been measured out to z∼4. However, nearly all studies beyond z∼0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galaxies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultradeep rest-frame optical spectra of five massive quiescent galaxies at z∼1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass–metallicity relation was already in place at z∼1.4. While the [Mg/Fe]−mass relation at z∼1.4 is consistent with the z<0.7 relation, [Fe/H] at z∼1.4 is ∼0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44+0.08 the most -0.07 massive galaxy may be more α-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low- mass, less α-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star formation timescales of 0.2–1.0 Gyr. 
    more » « less
  3. Abstract We present the stellar mass–stellar metallicity relation for 3491 star-forming galaxies at 2 ≲z≲ 3 using rest-frame far-ultraviolet spectra from the LyαTomography IMACS Survey (LATIS). We fit stellar population synthesis models from the Binary Population And Spectral Synthesis code (v2.2.1) to medium-resolution (R∼ 1000) and high signal-to-noise (>30 per 100 km s−1over the wavelength range 1221–1800 Å) composite spectra of galaxies in bins of stellar mass to determine their stellar metallicity, primarily tracing Fe/H. We find a strong correlation between stellar mass and stellar metallicity, with stellar metallicity monotonically increasing with stellar mass at low masses and flattening at high masses (M*≳ 1010.3M). Additionally, we compare our stellar metallicity measurements with the gas-phase oxygen abundance of galaxies at similar redshift and estimate the average [α/Fe] ∼ 0.6. Such highα-enhancement indicates that high-redshift galaxies have not yet undergone significant iron enrichment through Type Ia supernovae. Moreover, we utilize an analytic chemical evolution model to constrain the mass loading parameter of galactic winds as a function of stellar mass. We find that as the stellar mass increases, the mass loading parameter decreases. The parameter then flattens or reaches a turning point at aroundM*∼ 1010.5M. Our findings may signal the onset of black-hole-driven outflows atz∼ 2.5 for galaxies withM*≳ 1010.5M
    more » « less
  4. Abstract The chemical abundance patterns of gas and stars in galaxies are powerful probes of galaxies’ star formation histories and the astrophysics of galaxy assembly but are challenging to measure with confidence in distant galaxies. In this paper, we report the first measurements of the correlation between stellar mass ( M * ) and multiple tracers of chemical enrichment (including O, N, and Fe) in individual z ∼ 2–3 galaxies, using a sample of 195 star-forming galaxies from the Keck Baryonic Structure Survey. The galaxies’ chemical abundances are inferred using photoionization models capable of reconciling high-redshift galaxies’ observed extreme rest-UV and rest-optical spectroscopic properties. We find that the M * –O/H relation for our sample is relatively shallow, with moderately large scatter, and is offset ∼0.35 dex higher than the corresponding M * –Fe/H relation. The two relations have very similar slopes, indicating a high level of α -enhancement—O/Fe ≈ 2.2 × (O/Fe) ⊙ —across two decades in M * . The M * –N/H relation has the steepest slope and largest intrinsic scatter, which likely results from the fact that many z ∼ 2 galaxies are observed near or past the transition from “primary” to “secondary” N production, and may reflect uncertainties in the astrophysical origin of N. Together, these results suggest that z ∼ 2 galaxies are old enough to have seen substantial enrichment from intermediate-mass stars, but are still young enough that Type Ia supernovae have not had time to contribute significantly to their enrichment. 
    more » « less
  5. Abstract We characterize the multiphase circumgalactic medium (CGM) and galaxy properties atz= 6.0–6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305–3150 to identify one new metal absorber atz= 6.2713 with multiple transitions (Oi, Mgii, Feii,and Cii). They are combined with the published absorbing systems in Davies et al. at the same redshift range to form a sample of nine metal absorbers atz= 6.03–6.49. We identify eight galaxies within 1000 km s−1and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [Oiii] (λλ4959, 5007) doublets and Hβemission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar masses ranging from 107.2to 108.8Mand metallicity between 0.02 and 0.4 solar. Notably, thez= 6.2713 system in the J0305–3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances ofαelements to iron ([α/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α/Fe] ratio. Our modeling of the galaxy’s chemical abundance favors a top-heavy stellar initial mass function and hints that we may be witnessing the contribution of the first generation of Population III stars to the CGM at the end of the reionization epoch. 
    more » « less