Abstract In the collisionless plasmas of radiatively inefficient accretion flows, heating and acceleration of ions and electrons are not well understood. Recent studies in the gyrokinetic limit revealed the importance of incorporating both the compressive and Alfvénic cascades when calculating the partition of dissipated energy between the plasma species. In this paper, we use a covariant analytic model of the accretion flow to explore the impact of compressive and Alfvénic heating, Coulomb collisions, compressional heating, and radiative cooling on the radial temperature profiles of ions and electrons. We show that, independent of the partition of heat between the plasma species, even a small fraction of turbulent energy dissipated to the electrons makes their temperature scale with a virial profile and the ion-to-electron temperature ratio smaller than in the case of pure Coulomb heating. In contrast, the presence of compressive cascades makes this ratio larger because compressive turbulent energy is channeled primarily into the ions. We calculate the ion-to-electron temperature in the inner accretion flow for a broad range of plasma properties, mass accretion rates, and black hole spins and show that it ranges between 5 ≲Ti/Te≲ 40. We provide a physically motivated expression for this ratio that can be used to calculate observables from simulations of black hole accretion flows for a wide range of conditions.
more »
« less
Scale Separation Effects on Simulations of Plasma Turbulence
Abstract Understanding plasma turbulence requires a synthesis of experiments, observations, theory, and simulations. In the case of kinetic plasmas such as the solar wind, the lack of collisions renders the fluid closures such as viscosity meaningless and one needs to resort to higher-order fluid models or kinetic models. Typically, the computational expense in such models is managed by simulating artificial values of certain parameters such as the ratio of the Alfvén speed to the speed of light (vA/c) or the relative mass ratio of ions and electrons (mi/me). Although, typically care is taken to use values as close as possible to realistic values within the computational constraints, these artificial values could potentially introduce unphysical effects. These unphysical effects could be significant at sub-ion scales, where kinetic effects are the most important. In this paper, we use the 10-moment fluid model in the Gkeyll framework to perform controlled numerical experiments, systematically varying the ion–electron mass ratio from a small value down to the realistic proton–electron mass ratio. We show that the unphysical mass ratio has a significant effect on the kinetic range dynamics as well as the heating of both plasma species. The dissipative process for both ions and electrons becomes more compressive in nature, although the ions remain nearly incompressible in all cases. The electrons move from being dominated by incompressive viscous-like heating/dissipation to very compressive heating/dissipation dominated by compressions/rarefactions. While the heating change is significant for the electrons, a mass ratio ofmi/me∼ 250 captures the asymptotic behavior of electron heating.
more »
« less
- Award ID(s):
- 2108834
- PAR ID:
- 10540333
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 972
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 173
- Size(s):
- Article No. 173
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present the largest 3D particle-in-cell shearing-box simulations of turbulence driven by the magnetorotational instability, for the first time employing the realistic proton-to-electron mass ratio. We investigate the energy partition between relativistically hot electrons and subrelativistic ions in turbulent accreting plasma, a regime relevant to collisionless, radiatively inefficient accretion flows around supermassive black holes such as those targeted by the Event Horizon Telescope. We provide a simple empirical formula to describe the measured heating ratio between ions and electrons, which can be used for more accurate global modeling of accretion flows with standard fluid approaches such as general-relativistic magnetohydrodynamics.more » « less
-
Abstract Magnetic reconnection is a fundamental process in space and astrophysical plasmas that converts magnetic energy to particle energy. Recently, a novel kind of reconnection, called electron-only reconnection, has been observed in Earth's magnetosheath plasma. A defining characteristic of electron-only reconnection is that electron jets are observed but ion jets are absent. This is in contrast with traditional ion-coupled reconnection, where both ions and electrons exhibit outflowing velocity jets. Findings from the Magnetospheric Multiscale mission observations and particle-in-cell simulations show clear signatures of electron heating in electron-only reconnection events, while ions are not heated or cooled in these events. This result is unlike ion-coupled reconnection, where both ions and electrons are heated to varying degrees. The ratio of electron to ion dissipation increases with the local magnetic curvature, indicating that the partition of heat into ions and electrons is dependent on the current-sheet thickness.more » « less
-
Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ionβ(0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed,VA, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, . Instead, the heating increases progressively less as rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-βregime scales linearly with , with a scaling factor nearly identical to that found for the low-VAand high-βmagnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstreamVA, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating.more » « less
-
Large-amplitude electrostatic fluctuations are routinely observed by spacecraft upon traversal of collisionless shocks in the heliosphere. Kinetic simulations of shocks have struggled to reproduce the amplitude of such fluctuations, complicating efforts to un- derstand their influence on energy dissipation and shock structure. In this paper, 1D particle-in-cell simulations with realistic proton-to-electron mass ratio are used to show that in cases with upstream electron temperature Te exceeding the ion temperature Ti, the magnitude of the fluctuations increases with the electron plasma-to-cyclotron frequency ratio ωpe/Ωce, reaching realistic values at ωpe/Ωce ≳ 30. The large-amplitude fluctuations in the simulations are shown to be associated with electrostatic solitary structures, such as ion phase-space holes. In the cases where upstream temperature ratio is reversed, the magnitude of the fluctuations remains small.more » « less
An official website of the United States government
