skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 19, 2026

Title: First-principles Measurement of Ion and Electron Energization in Collisionless Accretion Flows
We present the largest 3D particle-in-cell shearing-box simulations of turbulence driven by the magnetorotational instability, for the first time employing the realistic proton-to-electron mass ratio. We investigate the energy partition between relativistically hot electrons and subrelativistic ions in turbulent accreting plasma, a regime relevant to collisionless, radiatively inefficient accretion flows around supermassive black holes such as those targeted by the Event Horizon Telescope. We provide a simple empirical formula to describe the measured heating ratio between ions and electrons, which can be used for more accurate global modeling of accretion flows with standard fluid approaches such as general-relativistic magnetohydrodynamics.  more » « less
Award ID(s):
2409316
PAR ID:
10586049
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
982
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the collisionless plasmas of radiatively inefficient accretion flows, heating and acceleration of ions and electrons are not well understood. Recent studies in the gyrokinetic limit revealed the importance of incorporating both the compressive and Alfvénic cascades when calculating the partition of dissipated energy between the plasma species. In this paper, we use a covariant analytic model of the accretion flow to explore the impact of compressive and Alfvénic heating, Coulomb collisions, compressional heating, and radiative cooling on the radial temperature profiles of ions and electrons. We show that, independent of the partition of heat between the plasma species, even a small fraction of turbulent energy dissipated to the electrons makes their temperature scale with a virial profile and the ion-to-electron temperature ratio smaller than in the case of pure Coulomb heating. In contrast, the presence of compressive cascades makes this ratio larger because compressive turbulent energy is channeled primarily into the ions. We calculate the ion-to-electron temperature in the inner accretion flow for a broad range of plasma properties, mass accretion rates, and black hole spins and show that it ranges between 5 ≲Ti/Te≲ 40. We provide a physically motivated expression for this ratio that can be used to calculate observables from simulations of black hole accretion flows for a wide range of conditions. 
    more » « less
  2. Abstract We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale, magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability. The PIC simulations reveal a nonlinear cyclic evolution of firehose bursts interspersed by periods of stable cooling. We compare the SFHI for electron–positron and electron–ion plasmas. As a byproduct of the growing electron-firehose magnetic-field fluctuations, magnetized ions gain a pressure anisotropy opposite to that of the electrons. If these ions are relativistically hot, we find that they also experience cooling due to collisionless thermal coupling with the electrons, which we argue is mediated by a secondary ion-cyclotron instability. We suggest that the SFHI may be activated in a number of astrophysical scenarios, such as within ejecta from black hole accretion flows and relativistic jets, where the redistribution of energetic electrons from low to high pitch angles may cause transient bursts of radiation. 
    more » « less
  3. Abstract The matter in an accretion disk must lose angular momentum when moving radially inwards but how this works has long been a mystery. By calculating the trajectories of individual colliding neutrals, ions, and electrons in a weakly ionized 2D plasma containing gravitational and magnetic fields, we numerically simulate accretion disk dynamics at the particle level. As predicted by Lagrangian mechanics, the fundamental conserved global quantity is the total canonical angular momentum, not the ordinary angular momentum. When the Kepler angular velocity and the magnetic field have opposite polarity, collisions between neutrals and charged particles cause: (i) ions to move radially inwards, (ii) electrons to move radially outwards, (iii) neutrals to lose ordinary angular momentum, and (iv) charged particles to gain canonical angular momentum. Neutrals thus spiral inward due to their decrease of ordinary angular momentum while the accumulation of ions at small radius and accumulation of electrons at large radius produces a radially outward electric field. In 3D, this radial electric field would drive an out-of-plane poloidal current that produces the magnetic forces that drive bidirectional astrophysical jets. Because this neutral angular momentum loss depends only on neutrals colliding with charged particles, it should be ubiquitous. Quantitative scaling of the model using plausible disk density, temperature, and magnetic field strength gives an accretion rate of 3 × 10−8solar mass per year, which is in good agreement with observed accretion rates. 
    more » « less
  4. Abstract Understanding plasma turbulence requires a synthesis of experiments, observations, theory, and simulations. In the case of kinetic plasmas such as the solar wind, the lack of collisions renders the fluid closures such as viscosity meaningless and one needs to resort to higher-order fluid models or kinetic models. Typically, the computational expense in such models is managed by simulating artificial values of certain parameters such as the ratio of the Alfvén speed to the speed of light (vA/c) or the relative mass ratio of ions and electrons (mi/me). Although, typically care is taken to use values as close as possible to realistic values within the computational constraints, these artificial values could potentially introduce unphysical effects. These unphysical effects could be significant at sub-ion scales, where kinetic effects are the most important. In this paper, we use the 10-moment fluid model in the Gkeyll framework to perform controlled numerical experiments, systematically varying the ion–electron mass ratio from a small value down to the realistic proton–electron mass ratio. We show that the unphysical mass ratio has a significant effect on the kinetic range dynamics as well as the heating of both plasma species. The dissipative process for both ions and electrons becomes more compressive in nature, although the ions remain nearly incompressible in all cases. The electrons move from being dominated by incompressive viscous-like heating/dissipation to very compressive heating/dissipation dominated by compressions/rarefactions. While the heating change is significant for the electrons, a mass ratio ofmi/me∼ 250 captures the asymptotic behavior of electron heating. 
    more » « less
  5. Abstract An important parameter in the theory of hot accretion flows around black holes is δ , which describes the fraction of “viscously” dissipated energy in the accretion flow that goes directly into heating electrons. For a given mass accretion rate, the radiative efficiency of a hot accretion flow is determined by δ . Unfortunately, the value of δ is hard to determine from first principles. The recent Event Horizon Telescope Collaboration (EHTC) results on M87* and Sgr A* provide us with a different way of constraining δ . By combining the mass accretion rates in M87* and Sgr A* estimated by the EHTC with the measured bolometric luminosities of the two sources, we derive good constraints on the radiative efficiencies of the respective accretion flows. In parallel, we use a theoretical model of hot magnetically arrested disks (MADs) to calculate the expected radiative efficiency as a function of δ (and accretion rate). By comparing the EHTC-derived radiative efficiencies with the theoretical results from MAD models, we find that Sgr A* requires δ ≳ 0.3. A similar comparison in the case of M87* gives inconclusive results as there is still a large uncertainty in the accretion rate in this source. 
    more » « less