skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Extreme singular values of inhomogeneous sparse random rectangular matrices
We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general random Hermitian matrices with a bipartite block structure. We obtain probabilistic upper (respectively, lower) bounds for the largest (respectively, smallest) singular values of a large rectangular random matrix X. These bounds are given in terms of the maximal and minimal 2-norms of the rows and columns of the variance profile of X. The proofs involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix B. The two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erd˝os-Rényi bipartite graphs for a wide range of sparsity, down to criticality. In particular, for Erd˝os-Rényi bipartite graphs G(n,m, p) with p = ω(log n)/n, and m/n→ y ∈ (0,1), our sharp bounds imply that there are no outliers outside the support of the Marˇcenko-Pastur law almost surely. This result extends the Bai-Yin theorem to sparse rectangular random matrices.  more » « less
Award ID(s):
2154099
PAR ID:
10540431
Author(s) / Creator(s):
;
Publisher / Repository:
Bernoulli
Date Published:
Journal Name:
Bernoulli
Volume:
30
Issue:
4
ISSN:
1350-7265
Page Range / eLocation ID:
2904–2931
Subject(s) / Keyword(s):
Extreme singular value inhomogeneous random matrix non-backtracking operator random bipartite graph
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/polylog(d) via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension. 
    more » « less
  2. Abstract We provide high-probability bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $N/m$, where $$N$$ is the number of neurons and $$m$$ is the number of data samples, scales like $$\log ^{-1}(N)$$ or $$\log (m)$$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We also derive an upper bound for the risk associated with regression problems using a random feature matrix. This upper bound exhibits the double descent phenomenon and indicates that this is an effect of the double descent behaviour of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the noiseless least squares or sparse regression cases, we show that the risk decreases as $$m$$ and $$N$$ increase. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data. 
    more » « less
  3. In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/log^O(1) d via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension. 
    more » « less
  4. We compute the eigenvalue fluctuations of uniformly distributed random biregular bipartite graphs with fixed and growing degrees for a large class of analytic functions. As a key step in the proof, we obtain a total variation distance bound for the Poisson approximation of the number of cycles and cyclically non-backtracking walks in random biregular bipartite graphs, which might be of independent interest. We also prove a semicircle law for random [Formula: see text]-biregular bipartite graphs when [Formula: see text]. As an application, we translate the results to adjacency matrices of uniformly distributed random regular hypergraphs. 
    more » « less
  5. We consider m independent random rectangular matrices whose entries are independent and identically distributed standard complex Gaussian random variables. Assume the product of the m rectangular matrices is an n-by-n square matrix. The maximum absolute value of the n eigenvalues of the product matrix is called spectral radius. In this paper, we study the limiting spectral radii of the product when m changes with n and can even diverge. We give a complete description for the limiting distribution of the spectral radius. Our results reduce to those in Jiang and Qi (J Theor Probab 30(1):326–364, 2017) when the rectangular matrices are square. 
    more » « less