skip to main content


This content will become publicly available on July 5, 2024

Title: Ellipsoid fitting up to a constant
In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/polylog(d) via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension.  more » « less
Award ID(s):
2008920
NSF-PAR ID:
10483221
Author(s) / Creator(s):
; ; ;
Editor(s):
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Subject(s) / Keyword(s):
["Semidefinite programming","random matrices","average-case complexity","Theory of computation → Semidefinite programming"]
Format(s):
Medium: X
Location:
Paderborn, Germany
Sponsoring Org:
National Science Foundation
More Like this
  1. In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/log^O(1) d via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension. 
    more » « less
  2. Given independent standard Gaussian points v1, . . . , vn in dimension d, for what values of (n, d) does there exist with high probability an origin-symmetric ellipsoid that simultaneously passes through all of the points? This basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis. Based on strong numerical evidence, Saunderson, Parrilo, and Willsky (Saunderson, 2011; Saunderson et al., 2013) conjectured that the ellipsoid fitting problem transitions from feasible to infeasible as the number of points n increases, with a sharp threshold at n ∼ d^2/4. We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some n = d^2/polylog(d). Our proof demonstrates feasibility of the least squares construction of (Saunderson, 2011; Saunderson et al., 2013) using a convenient decomposition of a certain non-standard random matrix and a careful analysis of its Neumann expansion via the theory of graph matrices. 
    more » « less
  3. A Chor–Goldreich (CG) source is a sequence of random variables X = X1 ∘ … ∘ Xt, where each Xi ∼ {0,1}d and Xi has δ d min-entropy conditioned on any fixing of X1 ∘ … ∘ Xi−1. The parameter 0<δ≤ 1 is the entropy rate of the source. We typically think of d as constant and t as growing. We extend this notion in several ways, defining almost CG sources. Most notably, we allow each Xi to only have conditional Shannon entropy δ d. We achieve pseudorandomness results for almost CG sources which were not known to hold even for standard CG sources, and even for the weaker model of Santha–Vazirani sources: We construct a deterministic condenser that on input X, outputs a distribution which is close to having constant entropy gap, namely a distribution Z ∼ {0,1}m for m ≈ δ dt with min-entropy m−O(1). Therefore, we can simulate any randomized algorithm with small failure probability using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our construction works in an online manner, since it is based on random walks on expanders. Our main technical contribution is a novel analysis of random walks, which should be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to X1∘ … ∘ Xt, accumulate most of the entropy in X. 
    more » « less
  4. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less
  5. Arıkan’s exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix M , a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the polarization of an associated [0, 1]-bounded martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arıkan showed appropriate polarization of the martingale associated with the matrix ( G 2 = ( 1 1 0 1) to get capacity achieving codes. His analysis was later extended to all matrices M that satisfy an obvious necessary condition for polarization. While Arıkan’s theorem does not guarantee that the codes achieve capacity at small blocklengths (specifically in length, which is a polynomial in ( 1ε ) where (ε) is the difference between the capacity of a channel and the rate of the code), it turns out that a “strong” analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with ( G 2 ) such a strong polarization was shown in two independent works (Guruswami and Xia (IEEE IT’15) and Hassani et al. (IEEE IT’14)), thereby resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are (in our view) also much simpler and modular. Key to our proof is a notion of local polarization that only depends on the evolution of the martingale in a single time step. We show that local polarization always implies strong polarization. We then apply relatively simple reasoning about conditional entropies to prove local polarization in very general settings. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources, and capacity-achieving channel codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability while maintaining lengths that are only inverse polynomial in the gap to capacity. 
    more » « less