When training deep neural networks, a model's generalization error is often observed to follow a power scaling law dependent both on the model size and the data size. Perhaps the best known example of such scaling laws are for transformer-based large language models (**LLMs**), where networks with billions of parameters are trained on trillions of tokens of text. Yet, despite sustained widespread interest, a rigorous understanding of why transformer scaling laws exist is still missing. To answer this question, we establish novel statistical estimation and mathematical approximation theories for transformers when the input data are concentrated on a low-dimensional manifold. Our theory predicts a power law between the generalization error and both the training data size and the network size for transformers, where the power depends on the intrinsic dimension d of the training data. Notably, the constructed model architecture is shallow, requiring only logarithmic depth in d. By leveraging low-dimensional data structures under a manifold hypothesis, we are able to explain transformer scaling laws in a way which respects the data geometry. Moreover, we test our theory with empirical observation by training LLMs on natural language datasets. We find the observed empirical scaling laws closely agree with our theoretical predictions. Taken together, these results rigorously show the intrinsic dimension of data to be a crucial quantity affecting transformer scaling laws in both theory and practice.
more »
« less
White-Box Transformers via Sparse Rate Reduction
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github. com/Ma-Lab-Berkeley/CRATE.
more »
« less
- Award ID(s):
- 2031899
- PAR ID:
- 10540482
- Publisher / Repository:
- the Thirty-seventh Annual Conference on Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformers can be equivalently expressed in a generalization of first-order logic. However, finite-precision transformers are a weak transformer variant because, as we show, a single head can only attend to a constant number of tokens and, in particular, cannot represent uniform attention. Since attending broadly is a core capability for transformers, we ask whether a minimally more expressive model that can attend universally can also be characterized in logic. To this end, we analyze transformers whose forward pass is computed in logn precision on contexts of length n. We prove that any log-precision transformer can be equivalently expressed as a first-order logic sentence that, in addition to standard universal and existential quantifiers, may also contain majority-vote quantifiers. This is the tightest known upper bound and first logical characterization of log-precision transformers.more » « less
-
Large Language Models (LLMs) have the capacity to store and recall facts. Through experimentation with open-source models, we observe that this ability to retrieve facts can be easily manipulated by changing contexts, even without altering their factual meanings. These findings highlight that LLMs might behave like an associative memory model where certain tokens in the contexts serve as clues to retrieving facts. We mathematically explore this property by studying how transformers, the building blocks of LLMs, can complete such memory tasks. We study a simple latent concept association problem with a one-layer transformer and we show theoretically and empirically that the transformer gathers information using self-attention and uses the value matrix for associative memory.more » « less
-
Despite their omnipresence in modern NLP, characterizing the computational power of transformer neural nets remains an interesting open question. We prove that transformers whose arithmetic precision is logarithmic in the number of input tokens (and whose feedforward nets are computable using space linear in their input) can be simulated by constant-depth logspace-uniform threshold circuits. This provides insight on the power of transformers using known results in complexity theory. For example, if L≠P (i.e., not all poly-time problems can be solved using logarithmic space), then transformers cannot even accurately solve linear equalities or check membership in an arbitrary context-free grammar with empty productions. Our result intuitively emerges from the transformer architecture's high parallelizability. We thus speculatively introduce the idea of a fundamental parallelism tradeoff: any model architecture as parallelizable as the transformer will obey limitations similar to it. Since parallelism is key to training models at massive scale, this suggests a potential inherent weakness of the scaling paradigm.more » « less
-
Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming projected pre-norm (a slight generalization of standard pre-norm), adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems—the first exact characterization of a type of transformers in terms of standard complexity classes. Together, this provides a nuanced framework for understanding how the length of a transformer’s chain of thought or scratchpad impacts its reasoning power.more » « less
An official website of the United States government

