skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engaging Social Science and Humanities Students in Community-Based Research on Nitrogen Oxide Pollution
A significant challenge to the community of chemistry education is the creation of materials that can be used in nonscience settings, including those of social science and humanities classrooms. As part of a larger effort to engage new communities in understanding how science data can impact such settings, including in the community, an experiment to detect the level of nitrogen oxides (NOx) in the air was implemented in university sociology and history classrooms. The use of an authentic scientific method within these settings generated important data for classroom use in classroom sociological and historical discussions. The impact on student attitudes and learning was also determined.  more » « less
Award ID(s):
1649298
PAR ID:
10540584
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Holme, Thomas A
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Education
Volume:
98
Issue:
12
ISSN:
0021-9584
Page Range / eLocation ID:
3940 to 3946
Subject(s) / Keyword(s):
General public General education Curriculum History
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article explores the challenges of enacting reform‐oriented curriculum in science classrooms. We use the concept of figured worlds to analyze a case study of an eighth‐grade science class where the teacher reported that the students were resistant to changes she was trying to make. By examining stimulated recall interviews with the teacher (including the associated classroom episodes) and post‐unit interviews with a subset of the students, we found that the students and the teacher constructed different figured worlds about the science learning in the classroom. These differences centered on the goals that students and teachers had for the class and the roles of the teacher and students in the learning environment. Specifically, we found that there was a lack of alignment around how students and the teacher viewed the purpose of student agency and collaboration and therefore they had different ideas about how they should interact with one another in the classroom. We conclude by discussing the implications of our findings for science education. We believe that the concept of figured worlds allows researchers and teachers to better understand the challenges of implementing reform‐oriented practices in science classrooms. This understanding can help teachers and professional development providers to create strategies for bridging the gap between different figured worlds and creating more collaborative and productive learning environments for all students. 
    more » « less
  2. To support students’ learning, a wide body of research and instructional reforms emphasize students’ engagement in productive talk with rigorous thinking in science classrooms. However, despite efforts, productive science talk is not yet prevalent in many classrooms. To gain more insight into the generation of productive talk in science classrooms, we explored a group of science teachers’ instructional vision and practices with respect to promoting classroom discourse. Our analysis revealed variations in teachers’ instructional visions and quality of instruction in their classrooms. In most cases, there was an alignment between teachers’ instructional vision and practices. We observed high quality instruction in terms of facilitating productive discussions and rigorous students’ thinking in the classroom of teachers with sophisticated instructional vision. Low instructional quality is observed in the classrooms of teachers with less articulate instructional vision of productive classroom discussion. We contend that exploring science teachers’ instructional vision and their instructional practices together can provide a powerful lens to identify the areas of improvement for promoting high-quality instruction in many science classrooms. Moreover, working towards the development of a shared vision of instruction by stakeholders and teachers can support enactment of high-quality science instruction. 
    more » « less
  3. Abstract BackgroundSituational engagement in science is often described as context-sensitive and varying over time due to the impact of situational factors. But this type of engagement is often studied using data that are collected and analyzed in ways that do not readily permit an understanding of the situational nature of engagement. The purpose of this study is to understand—and quantify—the sources of variability for learners’ situational engagement in science, to better set the stage for future work that measures situational factors and accounts for these factors in models. ResultsWe examined how learners' situational cognitive, behavioral, and affective engagement varies at the situational, individual learner, and classroom levels in three science learning environments (classrooms and an out-of-school program). Through the analysis of 12,244 self-reports of engagement collected using intensive longitudinal methods from 1173 youths, we found that the greatest source of variation in situational engagement was attributable to individual learners, with less being attributable to—in order—situational and classroom sources. Cognitive engagement varied relatively more between individuals, and affective engagement varied more between situations. ConclusionsGiven the observed variability of situational engagement across learners and contexts, it is vital for studies targeting dynamic psychological and social constructs in science learning settings to appropriately account for situational fluctuations when collecting and analyzing data. 
    more » « less
  4. As part of a larger study focused on supporting high school biology teachers' use of productive science talk, this study compares the use of two different observation protocols, the RTOP and the IQA-SOR. Reviewing a year-long data set of video observations collected from classrooms of teachers participating in the larger professional development study, the two validated instruments produced significantly correlated scores of different scales based on the unique structure of each tool. We posit this demonstrates that both instruments can be useful for analyzing classroom instruction intended to emphasize productive science talk. However, the instruments do possess unique structural and theoretical qualities that warrant this study to understand the insights afforded by each. The similarities and differences emerging from each are explored in the presentation and how they impact the analyses. These considerations can be helpful for scholars who research in-service teacher learning as classroom implementation and impact on student learning activities are general outcomes that most professional development research endeavors to explore. Further, considerations of what a particular observation protocols’ foci include will be necessary so that continued research on teacher learning works to make science learning through discourse accessible to all learners. 
    more » « less
  5. IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction. 
    more » « less