A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.
more »
« less
Radiative Majorana neutrino masses in a parity solution to the strong CP problem
A<sc>bstract</sc> The strong CP problem is solved in Parity symmetric theories, with the electroweak gauge group containing SU(2)L× SU(2)Rbroken by the minimal set of Higgs fields. Neutrino masses may be explained by adding the same number of gauge singlet fermions as the number of generations. The neutrino masses vanish at tree-level and are only radiatively generated, leading to larger couplings of right-handed neutrinos to Standard Model particles than with the tree-level seesaw mechanism. We compute these radiative corrections and the mixing angles between left- and right-handed neutrinos. We discuss sensitivities to these right-handed neutrinos from a variety of future experiments that search for heavy neutral leptons with masses from tens of MeV to the multi-TeV scale.
more »
« less
- Award ID(s):
- 2210390
- PAR ID:
- 10540619
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We analyze correlation functions of SU(k) × SU(2)Fflavor currents in a family of three-dimensional$$ \mathcal{N} $$ = 4 superconformal field theories, combining analytic bootstrap methods with input from supersymmetric localization. Via holographic duality, we extract gluon and graviton scattering amplitudes of M-theory on AdS4×S7/ℤkwhich contains a ℂ2/ℤkorbifold singularity. From these results, we derive aspects of the effective description of M-theory on the orbifold singularity beyond its leading low energy limit. We also determine a threshold correction to the holographic correlator from the combined contribution of two-loop gluon and tree-level bulk graviton exchange.more » « less
-
The nature of neutrino masses and the matter-antimatter asymmetry of our universe are two of the most important open problems in particle physics today and are notoriously difficult to test with current technology. Dirac neutrinos offer a solution through a leptogenesis mechanism that hinges on the smallness of neutrino masses and resultant non-thermalization of the right-handed neutrino partners in the early universe. We thoroughly explore possible realizations of this Dirac leptogenesis idea, revealing new windows for highly efficient asymmetry generation. In many of them, the number of relativistic degrees of freedom, Neff, is severely enhanced compared to standard cosmology and offers a novel handle to constrain Dirac leptogenesis with upcoming measurements of the cosmic microwave background. Realizations involving leptoquarks even allow for low-scale post-sphaleron baryogenesis and predict proton decay. These novel aspects render Dirac leptogenesis surprisingly testable.more » « less
-
A bstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.more » « less
-
A<sc>bstract</sc> Inspired by the structure of top-down derived models endowed with modular flavor symmetries, we investigate the yet phenomenologically unexplored binary dihedral group 2D3. After building the vector-valued modular forms in the representations of 2D3with small modular weights, we systematically classify all (Dirac and Majorana) mass textures of fermions with fractional modular weights and all possible 2 + 1-family structures. This allows us to explore the parameter space of fermion models based on 2D3, aiming at a description of both quarks and leptons with a minimal number of parameters and best compatibility with observed data. We consider the separate possibilities of neutrino masses generated by either a type-I seesaw mechanism or the Weinberg operator. We identify a model that, besides fitting all known flavor observables, delivers predictions for six not-yet measured parameters and favors normal-ordered neutrino masses generated by the Weinberg operator. It would be interesting to figure out whether it is possible to embed our model within a top-down scheme, such as$${\mathbb{T}}^{2}/{\mathbb{Z}}_{4}$$heterotic orbifold compactifications.more » « less