skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sterile neutrino dark matter and leptogenesis in Left-Right Higgs Parity
A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.  more » « less
Award ID(s):
1915314
PAR ID:
10444937
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore flavored resonant leptogenesis embedded in a neutrinophilic two-Higgs-doublet model. Successful leptogenesis is achieved by the very mildly degenerate two heavier right-handed neutrinos (RHNs) 𝑁2 and 𝑁3 with a level of only Δ⁢𝑀32/𝑀2∼𝒪⁡(0.1%–1%). The lightest RHN, with a MeV–GeV mass, lies below the sphaleron freeze-out temperature and is stable, serving as a dark matter candidate. The model enables TeV-scale leptogenesis while avoiding the extreme mass degeneracy typically plaguing conventional resonant leptogenesis. Baryon asymmetry, neutrino masses, and potentially even dark matter relic density can be addressed within a unified, experimentally testable framework. 
    more » « less
  2. We propose a novel leptogenesis mechanism with a temperature-dependent coupling between the right-handed neutrino and Standard Model particles. This coupling experiences suppression at high temperatures and becomes sizable when the lepton asymmetry washout processes are Boltzmann-suppressed. Such a feature ensures that the washout rates remain consistently below the Hubble expansion rate, preserving all lepton asymmetry generated in the decay of right-handed neutrinos. We illustrate the feasibility of this mechanism with two example models and show that the observed baryon asymmetry of the Universe can be successfully obtained for right-handed neutrino masses larger than 10 9 GeV as well as for smaller violation of charge-parity symmetry. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> The strong CP problem is solved in Parity symmetric theories, with the electroweak gauge group containing SU(2)L× SU(2)Rbroken by the minimal set of Higgs fields. Neutrino masses may be explained by adding the same number of gauge singlet fermions as the number of generations. The neutrino masses vanish at tree-level and are only radiatively generated, leading to larger couplings of right-handed neutrinos to Standard Model particles than with the tree-level seesaw mechanism. We compute these radiative corrections and the mixing angles between left- and right-handed neutrinos. We discuss sensitivities to these right-handed neutrinos from a variety of future experiments that search for heavy neutral leptons with masses from tens of MeV to the multi-TeV scale. 
    more » « less
  4. A<sc>bstract</sc> We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we callConformal Leptogenesis, admits a reliable description in terms of a set of “Boltzmann equations” whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness forallthe generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders. 
    more » « less
  5. We explore leptogenesis during a cosmological epoch during which the electroweak SU ( 2 ) L force is confined. During weak confinement, there is only one conserved nonanomalous global charge, r , which is a linear combination of lepton-number, baryon-number, and hypercharge. The inclusion of heavy Majorana neutrinos leads to an r -charge and C P -violating interaction with a composite scalar, Φ , and composite fermions, Ψ , allowing for the generation of an r -charge asymmetry, which translates into a baryon asymmetry post SU ( 2 ) L deconfinement. Determining the resulting baryon asymmetry as a function of the model parameters, we find that the predicted baryon-asymmetry can match observations for a wide swath of parameter space: a weak confinement scale Λ W 10 11 10 14 GeV , the sum of the Standard Model Yukawa couplings Y i α Y i α * 10 2 10 0 , m Φ / m Ψ 0 0.5 , and a Φ Ψ Ψ coupling | g | 1 with complex phase θ g π / 4 . While leptogenesis under the assumption of a standard cosmology relies on the complex phase of the neutrino Yukawa couplings, the asymmetry generated in this novel background cosmology primarily depends on a strong phase from SU ( 2 ) L confinement, θ g , and favors negligible C P -violation in the right-handed neutrino decays. 
    more » « less