Abstract Science, technology, engineering, and mathematics (STEM) education workshops and programs play a key role in promoting early exposure to scientific applications and questions. Such early engagement leads to growing not only passion and interest in science, but it also leads to skill development through hands-on learning and critical thinking activities. Integrating physiology and engineering together is necessary especially to promote health technology awareness and introduce the young generation to areas where innovation is needed and where there is no separation between health-related matters and engineering methods and applications. To achieve this, we created a workshop aimed at K-12 (grades 9–11) students as part of the Summer Youth Programs at Michigan Technological University. The aim of this workshop was to expose students to how engineering concepts and methods translate into health- and medicine-related applications and cases. The program consisted of a total of 15 h and was divided into three sections over a period of 2 weeks. It involved a combination of theoretical and hands-on guided activities that we developed. At the end of the workshop, the students were provided a lesson or activity-specific assessment sheet and a whole workshop-specific assessment sheet to complete. They rated the programs along a 1–5 Likert scale and provided comments and feedback on what can be improved in the future. Students rated hands-on activities the highest in comparison with case studies and individual independent research. Conclusively, this STEM summer-youth program was a successful experience with many opportunities that will contribute to the continued improvement of the workshop in the future.
more »
« less
Teaching Sound Editing with Audacity and Makey Makey
The goal of this study is to introduce sound editing and use the novelty of Makey Makey to increase interest in Information Technology. Using stories as a requirement for certain abstract sound effects, we show the importance of being able to edit recorded audio to produce sounds. Our workshop uses open-source applications that do not require prior knowledge of IT related concepts to ensure that our audience can follow along cohesively and explore the concepts taught on their own. Through this workshop, we have shown that outreach activities, such as ours, can spark an interest in STEM and IT.
more »
« less
- Award ID(s):
- 2315804
- PAR ID:
- 10540663
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400702372
- Page Range / eLocation ID:
- 315 to 316
- Subject(s) / Keyword(s):
- Audacity Information Technology Makey Makey Outreach Scratch Sound editing
- Format(s):
- Medium: X
- Location:
- Marietta GA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ACM/IEEE CS 2013 report recommends fifteen hours of parallel & distributed computing (PDC) education for every undergraduate. This workshop illustrates the use of the Raspberry Pi as an inexpensive, multicore platform for teaching shared-memory parallel programming. The inexpensive and tactile nature of the Raspberry Pi enables each student to experience her own parallel multiprocessor through sight and touch. In this hands-on workshop, we will teach attendees how they can leverage the Raspberry Pi and the OpenMP library to teach shared-memory parallel concepts in their own classrooms. All CS educators who are interested in learning about the Raspberry Pi, shared memory parallelism, and OpenMP are encouraged to attend. In Part I of the workshop, each participant will connect to and learn about the Raspberry Pi's multicore capabilities. In Part II, each participant will engage in self-paced, hands-on exploration of basic parallel computing concepts using the OpenMP "patternlets" from CSinParallel.org. In Part III, participants will investigate more complex applications, such as numeric integration and drug design and study how these applications can be parallelized using OpenMP. We will conclude the workshop with a series of lightning talks discussing how the Raspberry Pi has been used to teach parallel computing concepts at different institutions. We will also present a summary of student perceptions of the Raspberry Pi. All materials from this workshop will be freely available from CSinParallel.org. Space is limited to 20 participants. A laptop is required.more » « less
-
ABSTRACT Engaging students in hands-on activities and providing out-of-school experiences have been shown to improve academic performance and spark interest in science. Our interdisciplinary team developed a workshop for middle and high school students as part of a summer program at a Hispanic-serving institution in southern New Mexico. The goal was to foster interest and readiness for science, technology, engineering, and mathematics careers and college entry. The workshop introduced students to viscoelasticity, a key concept in biophysics that describes the mechanical behavior of biological tissues, which is vital for understanding their structural and functional properties under various physical forces and conditions. The curriculum included a presentation, a discussion linking mechanical properties with biology, and hands-on experiments that demonstrated viscoelastic principles. Pre- and postworkshop surveys assessed students’ experiences and understanding of the material. Analysis revealed that students could relate the concepts to their daily lives, gained a basic understanding of mechanical properties, and found at least one experiment enjoyable and interesting.more » « less
-
Abstract: Children can feel disengaged from STEM subjects taught in schools, which are often presented in ways that are not connected to their interests and everyday experiences. The subject of waves is fundamental for understanding a variety of scientific and engineering processes, from gravitation to telecommunications. Furthermore, the subject of waves presents an excellent opportunity to bring to the school activities connected to one of children’s deepest interests: music. For this, we created Listening to Waves, a program that has been developing web applications and curricular activities that allows users to connect with the science of waves by playfully exploring and creating sound and music. Previous work by our team has shown that these types of activities can be powerful for engaging children in science, especially those typically underrepresented in STEM domains. However, a fundamental step for their spreading is that they are also engaging for teachers. To disseminate the program and evaluate its potential to engage teachers, we created a three-day professional development workshop for teachers serving underserved communities. We administered quantitative and qualitative surveys before the workshop, immediately after the workshop, and after the teachers implemented the materials in their classrooms. The surveys indicate that the experience improved teachers’ attitudes toward the subject, including their comfort in teaching the subject, their enjoyment, and their perception of the children’s enjoyment. This effect was particularly relevant for teachers who were not initially engaged, either because of a lack of experience or lack of knowledge. Taken together, these results indicate that activities connecting music and STEM have the potential to spread throughout the formal educational system by engaging teachers, and that they can be instrumental in engaging children in STEM. This research is funded by NSF’s ITEST award “Increasing Students' Interest in STEM through the Science of Music.”more » « less
-
Topological physics has been driving exciting progress in the area of condensed matter physics, with findings that have recently spilled over into the field of metamaterials research inspiring the design of structured materials that can govern in new ways the flow of light and sound. While so far these advances have been driven by fundamental curiosity-driven explorations, without a focused interest on their technological implications, opportunities to translate these findings into applied research have started to emerge, in particular in the context of sound control. Our team has been leading a highly collaborative research effort on advancing the field of topological acoustics, dubbed ‘New Frontiers of Sound’ and connecting it to technological opportunities for computing, communications, energy and sensing. In this comment, we outline our vision towards the future of topological sound, and its translation towards industry-relevant functionalities and operations based on extreme control of acoustic and phononic waves.more » « less
An official website of the United States government

