skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment
Deep learning models are trained with certain assumptions about the data during the development stage and then used for prediction in the deployment stage. It is important to reason about the trustworthiness of the model's predictions with unseen data during deployment. Existing methods for specifying and verifying traditional software are insufficient for this task, as they cannot handle the complexity of DNN model architecture and expected outcomes. In this work, we propose a novel technique that uses rules derived from neural network computations to infer data preconditions for a DNN model to determine the trustworthiness of its predictions. Our approach, DeepInfer involves introducing a novel abstraction for a trained DNN model that enables weakest precondition reasoning using Dijkstra's Predicate Transformer Semantics. By deriving rules over the inductive type of neural network abstract representation, we can overcome the matrix dimensionality issues that arise from the backward non-linear computation from the output layer to the input layer. We utilize the weakest precondition computation using rules of each kind of activation function to compute layer-wise precondition from the given postcondition on the final output of a deep neural network. We extensively evaluated DeepInfer on 29 real-world DNN models using four different datasets collected from five different sources and demonstrated the utility, effectiveness, and performance improvement over closely related work. DeepInfer efficiently detects correct and incorrect predictions of high-accuracy models with high recall (0.98) and high F-1 score (0.84) and has significantly improved over the prior technique, SelfChecker. The average runtime overhead of DeepInfer is low, 0.22 sec for all the unseen datasets. We also compared runtime overhead using the same hardware settings and found that DeepInfer is 3.27 times faster than SelfChecker, the state-of- the-art in this area.  more » « less
Award ID(s):
2223812 2120448 2512857 2512858
PAR ID:
10540741
Author(s) / Creator(s):
; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
ISBN:
9798400702174
Subject(s) / Keyword(s):
deep neural networks, weakest precondition, trustworthiness
Format(s):
Medium: X Size: 2.2MB Other: .pdf
Size(s):
2.2MB
Location:
ICSE '24: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, Lisbon, Portugal
Sponsoring Org:
National Science Foundation
More Like this
  1. Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets and is typically unknown due to the lack of ground truth labels. This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications. In this paper, we address trustworthiness of DNNs by using post-hoc processing to monitor the true inference accuracy on a user’s dataset. Concretely, we propose a neural network-based accuracy monitor model, which only takes the deployed DNN’s softmax probability output as its input and directly predicts if the DNN’s prediction result is correct or not, thus leading to an estimate of the true inference accuracy. The accuracy monitor model can be pre-trained on a dataset relevant to the target application of interest, and only needs to actively label a small portion (1% in our experiments) of the user’s dataset for model transfer. For estimation robustness, we further employ an ensemble of monitor models based on the Monte-Carlo dropout method. We evaluate our approach on different deployed DNN models for image classification and traffic sign detection over multiple datasets (including adversarial samples). The result shows that our accuracy monitor model provides a close-to-true accuracy estimation and outperforms the existing baseline methods. 
    more » « less
  2. With the success of deep neural networks (DNN), many recent works have been focusing on developing hardware accelerator for power and resource-limited embedded system via model compression techniques, such as quantization, pruning, low-rank approximation, etc. However, almost all existing DNN structure is fixed after deployment, which lacks runtime adaptive DNN structure to adapt to its dynamic hardware resource, power budget, throughput requirement, as well as dynamic workload. Correspondingly, there is no runtime adaptive hardware platform to support dynamic DNN structure. To address this problem, we first propose a dynamic channel-adaptive deep neural network (CA-DNN) which can adjust the involved convolution channel (i.e. model size, computing load) at run-time (i.e. at inference stage without retraining) to dynamically trade off between power, speed, computing load and accuracy. Further, we utilize knowledge distillation method to optimize the model and quantize the model to 8-bits and 16-bits, respectively, for hardware friendly mapping. We test the proposed model on CIFAR-10 and ImageNet dataset by using ResNet. Comparing with the same model size of individual model, our CA-DNN achieves better accuracy. Moreover, as far as we know, we are the first to propose a Processing-in-Memory accelerator for such adaptive neural networks structure based on Spin Orbit Torque Magnetic Random Access Memory(SOT-MRAM) computational adaptive sub-arrays. Then, we comprehensively analyze the trade-off of the model with different channel-width between the accuracy and the hardware parameters, eg., energy, memory, and area overhead. 
    more » « less
  3. Deep learning techniques have been widely adopted in daily life with applications ranging from face recognition to recommender systems. The substantial overhead of conventional error tolerance techniques precludes their widespread use, while approaches involving median filtering and invariant generation rely on alterations to DNN training that may be difficult to achieve for larger networks on larger datasets. To address this issue, this paper presents a novel approach taking advantage of the statistics of neuron output gradients to identify and suppress erroneous neuron values. By using the statistics of neurons’ gradients with respect to their neighbors, tighter statistical thresholds are obtained compared to the use of neuron output values alone. This approach is modular and is combined with accurate, low-overhead error detection methods to ensure it is used only when needed, further reducing its cost. Deep learning models can be trained using standard methods and our error correction module is fit to a trained DNN, achieving comparable or superior performance compared to baseline error correction methods while incurring comparable hardware overhead without needing to modify DNN training or utilize specialized hardware architectures. 
    more » « less
  4. Deep learning techniques have been widely adopted in daily life with applications ranging from face recognition to recommender systems. The substantial overhead of conventional error tolerance techniques precludes their widespread use, while approaches involving median filtering and invariant generation rely on alterations to DNN training that may be difficult to achieve for larger networks on larger datasets. To address this issue, this paper presents a novel approach taking advantage of the statistics of neuron output gradients to identify and suppress erroneous neuron values. By using the statistics of neurons’ gradients with respect to their neighbors, tighter statistical thresholds are obtained compared to the use of neuron output values alone. This approach is modular and is combined with accurate, low-overhead error detection methods to ensure it is used only when needed, further reducing its cost. Deep learning models can be trained using standard methods and our error correction module is fit to a trained DNN, achieving comparable or superior performance compared to baseline error correction methods while incurring comparable hardware overhead without needing to modify DNN training or utilize specialized hardware architectures. 
    more » « less
  5. IEEE Open Journal of the Computer Society (Ed.)
    While neural networks have been achieving increasingly significant excitement in solving classification tasks such as natural language processing, their lack of interpretability becomes a great challenge for neural networks to be deployed in certain high-stakes human-centered applications. To address this issue, we propose a new approach for generating interpretable predictions by inferring a simple three-layer neural network with threshold activations, so that it can benefit from effective neural network training algorithms and at the same time, produce human-understandable explanations for the results. In particular, the hidden layer neurons in the proposed model are trained with floating point weights and binary output activations. The output neuron is also trainable as a threshold logic function that implements a disjunctive operation, forming the logical-OR of the first-level threshold logic functions. This neural network can be trained using state-of-the-art training methods to achieve high prediction accuracy. An important feature of the proposed architecture is that only a simple greedy algorithm is required to provide an explanation with the prediction that is human-understandable. In comparison with other explainable decision models, our proposed approach achieves more accurate predictions on a broad set of tabular data classification datasets. 
    more » « less