Abstract Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2and MoS2under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p‐type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.
more »
« less
Metal Ion‐Induced Large Fragment Deactivation: A Different Strategy for Site‐Selectivity in a Complex Molecule
Abstract Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.
more »
« less
- Award ID(s):
- 2102116
- PAR ID:
- 10540782
- Editor(s):
- Tobey, Suzanne
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 13
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The epoxidation of olefins on Ag/O systems is a significant industrial‐scale process within heterogeneous catalysis. However, the details of the surface reaction remain controversial, and it has been highly challenging to reconcile the findings from cataltyic studies under reaction conditions with the highly detailed static studies under carefully controlled ultra‐high vacuum (UHV) conditions. In this study, we combine molecular beam surface scattering and ion imaging techniques to explore the partial oxidation of styrene. This experimental approach enhances the sensitivity to the extent that we can directly observe the partial oxidation product, styrene oxide, under UHV conditions. We note that partial oxidation exclusively occurs at high oxygen coverages, which we attribute to the reaction of styrene with electrophilic oxygen formed specifically at elevated coverages.more » « less
-
The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects.more » « less
-
Abstract We report a detailed experimental and theoretical analysis of through‐space arene activation with halogens, tetrazoles and achiral esters and amides. Contrary to previously assumed direct activation through σ‐complex stabilization, our results suggest that these reactions proceed by a relay mechanism wherein the lone pair‐containing activators form exothermic π‐complexes with electrophilic nitronium ion before transferring it to the probe ring through low barrier transition states. Noncovalent interactions (NCI) plots and Quantum Theory of Atoms in Molecules (QTAIM) analyses depict favorable interactions between the Lewis base (LB) and the nitronium ion in the precomplexes and the transition states, suggesting directing group participation throughout the mechanism. The regioselectivity of substitution also comports with a relay mechanism. In all, these data pave the way for an alternate platform of electrophilic aromatic substitution (EAS) reactions.more » « less
-
Abstract Demagnetizing effects and internal stress are difficult to distinguish in natural magnetite samples, but quantitative stress estimates can provide valuable information about microstructure formation, surface oxidation, impacts, tectonic stresses, or interface properties in exsolution structures. Quantifying demagnetizing effects informs about magnetite particle shape, magnetostatic interaction, or anisotropic texture. Here, we establish an improved measurement workflow to separate demagnetizing effects from internal stress for natural magnetite. The method is based on temperature‐dependent hysteresis measurements, and for natural samples require accurate estimates of Curie temperature and temperature‐dependent saturation magnetization to ensure that near‐end‐member magnetite is the dominant magnetic mineral, and to calibrate the temperature‐dependent scaled reversible work (SRW). SRW is the fundamental quantity to determine stress and demagnetizing factor. The improved SRW method is applied to three natural samples with different stress histories where it proves that large magnetite crystals in the metamorphosed Modum complex (Norway) have low internal stress (<100 MPa), while in highly exsolved magnetite‐ilmenite intergrowths from Taberg (Sweden) and Bushveld (South Africa) the magnetite component is highly stressed (>230 MPa). This confirms experimentally that interface strain in complex microstructures due to spinodal decomposition and partial oxidation creates large average internal stress in the magnetite minerals. Because sister specimens have similar internal stress but noticeably (>20%) different demagnetizing factors, textural, and shape anisotropy contribute substantially to SRW in these samples.more » « less
An official website of the United States government

