skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Internal Stress and Demagnetization Effects for Natural Multidomain Magnetite and Magnetite‐Ilmenite Intergrowths
Abstract Demagnetizing effects and internal stress are difficult to distinguish in natural magnetite samples, but quantitative stress estimates can provide valuable information about microstructure formation, surface oxidation, impacts, tectonic stresses, or interface properties in exsolution structures. Quantifying demagnetizing effects informs about magnetite particle shape, magnetostatic interaction, or anisotropic texture. Here, we establish an improved measurement workflow to separate demagnetizing effects from internal stress for natural magnetite. The method is based on temperature‐dependent hysteresis measurements, and for natural samples require accurate estimates of Curie temperature and temperature‐dependent saturation magnetization to ensure that near‐end‐member magnetite is the dominant magnetic mineral, and to calibrate the temperature‐dependent scaled reversible work (SRW). SRW is the fundamental quantity to determine stress and demagnetizing factor. The improved SRW method is applied to three natural samples with different stress histories where it proves that large magnetite crystals in the metamorphosed Modum complex (Norway) have low internal stress (<100 MPa), while in highly exsolved magnetite‐ilmenite intergrowths from Taberg (Sweden) and Bushveld (South Africa) the magnetite component is highly stressed (>230 MPa). This confirms experimentally that interface strain in complex microstructures due to spinodal decomposition and partial oxidation creates large average internal stress in the magnetite minerals. Because sister specimens have similar internal stress but noticeably (>20%) different demagnetizing factors, textural, and shape anisotropy contribute substantially to SRW in these samples.  more » « less
Award ID(s):
2153786
PAR ID:
10488170
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150  $$\,^{\circ }$$ ∘ C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10 $$^{-9.4}$$ - 9.4 to 10 $$^{-4}$$ - 4 atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as $$f_{O_{2}}^{-0.7}$$ f O 2 - 0.7 and $$f_{O_{2}}^{0.4}$$ f O 2 0.4 at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated $${f_O}_2$$ f O 2 -independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative $${f_O}_2$$ f O 2 -dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep. 
    more » « less
  2. Abstract Iron mineral transformations occurring in hydrocarbon‐contaminated sites are linked to the biodegradation of the hydrocarbons. At a hydrocarbon‐contaminated site near Bemidji, Minnesota, USA, measurements of magnetic susceptibility (MS) are useful for monitoring the natural attenuation of hydrocarbons related to iron cycling. However, a transient MS, previously observed at the site, remains poorly understood and the iron mineral phases acting as reactants and products associated with this MS perturbation remain largely unknown. To address these unknowns, we acquired mineral magnetism measurements, including hysteresis loops, backfield curves, and isothermal remanent magnetizations on sediment core samples retrieved from the site and magnetite‐filled mineral packets installed within the aquifer. Our data show that the core samples and magnetite packs display decreasing magnetization with time and that this loss in magnetization is accompanied by increasing bulk coercivity consistent with decreased average grain size and/or partial oxidation. Low‐temperature magnetometry on all samples displayed behavior consistent with magnetite, but samples within the plume also show evidence of maghemitization. This interpretation is supported by the occurrence of shrinkage cracks on the surface of the grains imaged via scanning electron microscopy. Magnetite transformation to maghemite typically occurs under oxic conditions, here, we propose that maghemitization occurs within the anoxic portions of the plume via microbially mediated anaerobic oxidation. Mineral dissolution also occurs within the plume. Microorganisms capable of such anaerobic oxidation have been identified within other areas at the Bemidji site, but additional microbiological studies are needed to link specific anaerobic iron oxidizers with this loss of magnetization. 
    more » « less
  3. SUMMARY Cyclic loading at elevated temperatures occurs either naturally during tectonic or volcanic-induced earthquakes or can be human-induced due to various geological engineering activities. The aim of this study is to test if mechanical fatigue in rocks can be monitored by magnetic methods. For this purpose, the effect of cyclic-mechanical loading (150 ± 30 MPa) on the magnetic susceptibility and its anisotropy of a magnetite-bearing ore with varying temperatures (400 and 500 °C) and environment (air and vacuum) was investigated. Our study shows that magnetic susceptibility decreases significantly (up to 23 per cent) under air conditions and in vacuum (up to 4 per cent) within the first ca. 1000 cycles. Further loading does not significantly affect the magnetic susceptibility which then remains more or less constant. The decrease of susceptibility parameters is stronger at 500 °C compared to 400 °C under both experimental conditions. Magnetic susceptibility was always measured after decompression of the loaded sample at room temperature so that magnetostriction can be excluded as a reason for these changes. The higher the temperature at which samples were loaded the more pronounced is the oxidation of magnetite to haematite. The transformation of magnetite into haematite under ambient conditions is the most important mechanism influencing bulk magnetic properties. The weak changes in magnetic susceptibility after vacuum loadings are probably caused by intragranular microcracks formed on the surface of magnetite grains. These surface deformation structures are accompanied by the refinement of magnetic domains, which is observed by magnetic force microscopy. Bulk magnetic grain size modifications are also confirmed by hysteresis parameters as well as by the increasing Hopkinson peak ratios determined from magnetic susceptibility measurements over Curie point. The degree of magnetic anisotropy and shape factor only change for the air-treated samples and are therefore related to the haematite formation and not to irreversible ductile deformation in magnetite. Our experimental study shows that cyclic loading can change significantly the magnetic properties of a rock due to mineral transformation below < 1000 cycles and that the first stages of mechanical fatigue, which are a precursor of the failure of rock, are closely associated with these transformations. 
    more » « less
  4. SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers. 
    more » « less
  5. Abstract Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains (10 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned. 
    more » « less