skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodynamics Control Nitrous Oxide Production in Eutrophic Coastal Permeable Sediments
Permeable sediments, which make up almost half of the continental shelf worldwide, are potential sources of the important greenhouse gas N2O from coastal regions. Yet, the extent to which interactions between these sediments and anthropogenic pollution produce N2O is still unknown. Here we use laboratory experiments and modeling to explore the factors controlling N2O production at a eutrophic site in a temperate shallow marine embayment (Port Phillip Bay, Australia). Our results show that denitrification is the main source of N2O production within permeable sediments, but the extent to which N2O is actually released is determined by the rate of seawater exchange with the sediment bed (which governs solute residence time within the bed). In wave‐dominated coastal areas, shallower water with more intense waves (wave height >> 1 m) release the most N2O, with up to 0.5% of dissolved inorganic nitrogen pumped into biologically active eutrophic sediment being released as N2O. Our results suggest rates of N2O production in coastal permeable sediments are generally low compared to other environments.  more » « less
Award ID(s):
2021015
PAR ID:
10540786
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
129
Issue:
7
ISSN:
2169-8953
Subject(s) / Keyword(s):
nitrous oxide emission coastal sediments
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  2. Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection. 
    more » « less
  3. Abstract Alongshore current‐supported turbidity currents (ACSTCs) are a subclass of wave‐ and current‐supported turbidity currents. They are one of the agents responsible for the dispersal of the river‐borne sediments on the continental shelf, which constitutes a major phenomenon controlling the geomorphic evolution of ocean‐basin margins over geological time. Therefore, parameterization of the sediment flux associated with ACSTCs will help its implementation in operational models and quantify the sediment flux budgets on the continental shelf. The velocity structure of ACSTCs and the amount of sediments suspended by them are crucial to determine the suspended sediment flux. This study investigates the velocity structure of a simplified miniature ACSTC over an erodible bed composed of fine sediments. Direct numerical simulations are conducted for various bed erosion parameters and sediment settling velocity. The role of sediment‐induced stable density stratification on the velocity structure of ACSTCs is analyzed. The simulation results indicate that density stratification and the drag coefficient are functions of the product of sediment settling velocity and sediment concentration. The velocity profile was found to deviate toward the alongshore direction with strengthening density stratification, which enhances the drag coefficient. By using the Monin‐Obukhov theory, the drag coefficient associated with the cross‐shelf propagation of ACSTCs is formulated as a function of the Reynolds number, sediment concentration, and sediment settling velocity. 
    more » « less
  4. Abstract. Oxygen-deficient zones (ODZs) are major sites of net naturalnitrous oxide (N2O) production and emissions. In order to understandchanges in the magnitude of N2O production in response to globalchange, knowledge on the individual contributions of the major microbialpathways (nitrification and denitrification) to N2O production andtheir regulation is needed. In the ODZ in the coastal area off Peru, thesensitivity of N2O production to oxygen and organic matter wasinvestigated using 15N tracer experiments in combination with quantitative PCR (qPCR) andmicroarray analysis of total and active functional genes targeting archaeal amoAand nirS as marker genes for nitrification and denitrification, respectively.Denitrification was responsible for the highest N2O production with amean of 8.7 nmol L−1 d−1 but up to 118±27.8 nmol L−1 d−1 just below the oxic–anoxic interface. The highest N2O productionfrom ammonium oxidation (AO) of 0.16±0.003 nmol L−1 d−1occurred in the upper oxycline at O2 concentrations of 10–30 µmol L−1 which coincided with the highest archaeal amoA transcripts/genes.Hybrid N2O formation (i.e., N2O with one N atom from NH4+and the other from other substrates such as NO2-) was the dominantspecies, comprising 70 %–85 % of total produced N2O fromNH4+, regardless of the ammonium oxidation rate or O2concentrations. Oxygen responses of N2O production varied withsubstrate, but production and yields were generally highest below 10 µmol L−1 O2. Particulate organic matter additions increasedN2O production by denitrification up to 5-fold, suggesting increasedN2O production during times of high particulate organic matter export.High N2O yields of 2.1 % from AO were measured, but the overallcontribution by AO to N2O production was still an order of magnitudelower than that of denitrification. Hence, these findings show thatdenitrification is the most important N2O production process in low-oxygen conditions fueled by organic carbon supply, which implies a positivefeedback of the total oceanic N2O sources in response to increasingoceanic deoxygenation. 
    more » « less
  5. A broadly accepted paradigm is that vegetation reduces coastal dune erosion. However, we show that during an extreme storm event, vegetation surprisingly accelerates erosion. In 104-m-long beach-dune profile experiments conducted within a flume, we discovered that while vegetation initially creates a physical barrier to wave energy, it also (i) decreases wave run-up, which creates discontinuities in erosion and accretion patterns across the dune slope, (ii) increases water penetration into the sediment bed, which induces its fluidization and destabilization, and (iii) reflects wave energy, accelerating scarp formation. Once a discontinuous scarp forms, the erosion accelerates further. These findings fundamentally alter the current understanding of how natural and vegetated features may provide protection during extreme events. 
    more » « less