skip to main content


Title: Crystal structure of calcium-ferrite type NaAlSiO4 up to 45 GPa
Abstract

Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.

 
more » « less
Award ID(s):
1853521
PAR ID:
10540816
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Mineralogical Society of America
Date Published:
Journal Name:
American Mineralogist
Volume:
108
Issue:
12
ISSN:
0003-004X
Page Range / eLocation ID:
2331 to 2337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (Cij) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal Cij of (Al,Fe)-bearing bridgmanite, Mg0.88Fe0.1Al0.14Si0.90O3 (Fe10-Al14-Bgm) with Fe3+/ΣFe = ~0.65, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (–0.50, 0.05, –0.86) and (0.65, –0.59, 0.48), that are sensitive to deriving all nine Cij, are used for compressional and shear wave velocity (νP and νS) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all Cij of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% (±1σ), except C55 and C23, which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: KS = 326 ± 4 GPa, µ = 211 ± 2 GPa, KS′ = 3.32 ± 0.04, and µ′ = 1.66 ± 0.02 GPa. The high-pressure aggregate νS and νP of Fe10-Al14-Bgm are 2.6–3.5% and 3.1–4.7% lower than those of MgSiO3 bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models. 
    more » « less
  2. The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1−10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications. 
    more » « less
  3. Goethite is a major iron-bearing sedimentary mineral on Earth. In this study, we conducted in situ high-pressure x-ray diffraction, Raman, and electrical impedance spectroscopy measurements of goethite using a diamond anvil cell (DAC) at room temperature and high pressures up to 32 GPa. We observed feature changes in both the Raman spectra and electrical resistance at about 5 and 11 GPa. However, the x-ray diffraction patterns show no structural phase transition in the entire pressure range of the study. The derived pressure-volume (P-V) data show a smooth compression curve with no clear evidence of any second-order phase transition. Fitting the volumetric data to the second-order Birch–Murnaghan equation of state yields V0 = 138.9 ± 0.5 Å3 and K0 = 126 ± 5 GPa. 
    more » « less
  4. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

     
    more » « less
  5. Abstract

    The transport of hydrogen into Earth's deep interior may have an impact on lower mantle dynamics as well as on the seismic signature of subducted material. Due to the stability of the hydrous phasesδ‐AlOOH (delta phase), MgSiO2(OH)2(phase H), andε‐FeOOH at high temperatures and pressures, their solid solutions may transport significant amounts of hydrogen as deep as the core‐mantle boundary. We have constrained the equation of state, including the effects of a spin crossover in the Fe3+atoms, of (Al, Fe)‐phase H: Al0.84Fe3+0.07Mg0.02Si0.06OOH, using powder X‐ray diffraction measurements to 125 GPa, supported by synchrotron Mössbauer spectroscopy measurements on (Al, Fe)‐phase H andδ‐(Al, Fe)OOH. The changes in spin state of Fe3+in (Al, Fe)‐phase H results in a significant decrease in bulk sound velocity and occurs over a different pressure range (48–62 GPa) compared withδ‐(Al, Fe)OOH (32–40 GPa). Changes in axial compressibilities indicate a decrease in the compressibility of hydrogen bonds in (Al, Fe)‐phase H near 30 GPa, which may be associated with hydrogen bond symmetrization. The formation of (Al, Fe)‐phase H in subducted oceanic crust may contribute to scattering of seismic waves in the mid‐lower mantle (∼1,100–1,550 km). Accumulation of 1–4 wt.% (Al, Fe)‐phase H could reproduce some of the seismic signatures of large, low seismic‐velocity provinces. Our results suggest that changes in the electronic structure of phases in the (δ‐AlOOH)‐(MgSiO2(OH)2)‐(ε‐FeOOH) solid solution are sensitive to composition and that the presence of these phases in subducted oceanic crust could be seismically detectable throughout the lower mantle.

     
    more » « less