skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GraphMini: Accelerating Graph Pattern Matching Using Auxiliary Graphs
Graph pattern matching is a fundamental problem encountered by many common graph mining tasks and the basic building block of several graph mining systems. This paper explores for the first time how to proactively prune graphs to speed up graph pattern matching by leveraging the structure of the query pattern and the input graph. We propose building auxiliary graphs, which are different pruned versions of the graph, during query execution. This requires careful balancing between the upfront cost of building and managing auxiliary graphs and the gains of faster set operations. To this end, we propose GraphMini, a new system that uses query compilation and a new cost model to minimize the cost of building and maintaining auxiliary graphs and maximize gains. Our evaluation shows that using GraphMini can achieve one order of magnitude speedup compared to state-of-the-art subgraph enumeration systems on commonly used benchmarks.  more » « less
Award ID(s):
2224054
PAR ID:
10540832
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4254-3
Page Range / eLocation ID:
211 to 224
Subject(s) / Keyword(s):
graph pattern matching subgraph enumeration proactive pruning auxiliary graphs
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. Subgraph matching is a core primitive across a number of disciplines, ranging from data mining, databases, information retrieval, computer vision to natural language processing. Despite decades of efforts, it is still highly challenging to balance between the matching accuracy and the computational efficiency, especially when the query graph and/or the data graph are large. In this paper, we propose an index-based algorithm (G-FINDER) to find the top-k approximate matching subgraphs. At the heart of the proposed algorithm are two techniques, including (1) a novel auxiliary data structure (LOOKUP-TABLE) in conjunction with a neighborhood expansion method to effectively and efficiently index candidate vertices, and (2) a dynamic filtering and refinement strategy to prune the false candidates at an early stage. The proposed G-FINDER bears some distinctive features, including (1) generality, being able to handle different types of inexact matching (e.g., missing nodes, missing edges, intermediate vertices) on node attributed and/or edge attributed graphs or multigraphs; (2) effectiveness, achieving up to 30% F1-Score improvement over the best known competitor; and (3) efficiency, scaling near-linearly w.r.t. the size of the data graph as well as the query graph. 
    more » « less
  2. The classic problem of exact subgraph matching returns those subgraphs in a large-scale data graph that are isomorphic to a given query graph, which has gained increasing importance in many real-world applications such as social network analysis, knowledge graph discovery in the Semantic Web, bibliographical network mining, and so on. In this paper, we propose a novel and effective graph neural network (GNN)-based path embedding framework (GNN-PE), which allows efficient exact subgraph matching without introducing false dismissals. Unlike traditional GNN-based graph embeddings that only produce approximate subgraph matching results, in this paper, we carefully devise GNN-based embeddings for paths, such that: if two paths (and 1-hop neighbors of vertices on them) have the subgraph relationship, their corresponding GNN-based embedding vectors will strictly follow the dominance relationship. With such a newly designed property of path dominance embeddings, we are able to propose effective pruning strategies based on path label/dominance embeddings and guarantee no false dismissals for subgraph matching. We build multidimensional indexes over path embedding vectors, and develop an efficient subgraph matching algorithm by traversing indexes over graph partitions in parallel and applying our pruning methods. We also propose a cost-model-based query plan that obtains query paths from the query graph with low query cost. Through extensive experiments, we confirm the efficiency and effectiveness of our proposed GNN-PE approach for exact subgraph matching on both real and synthetic graph data. 
    more » « less
  3. Finding frequent subgraph patterns in a big graph is an important problem with many applications such as classifying chemical compounds and building indexes to speed up graph queries. Since this problem is NP-hard, some recent parallel systems have been developed to accelerate the mining. However, they often have a huge memory cost, very long running time, suboptimal load balancing, and possibly inaccurate results. In this paper, we propose an efficient system called T-FSM for parallel mining of frequent subgraph patterns in a big graph. T-FSM adopts a novel task-based execution engine design to ensure high concurrency, bounded memory consumption, and effective load balancing. It also supports a new anti-monotonic frequentness measure called Fraction-Score, which is more accurate than the widely used MNI measure. Our experiments show that T-FSM is orders of magnitude faster than SOTA systems for frequent subgraph pattern mining. Our system code has been released at https://github.com/lyuheng/T-FSM. 
    more » « less
  4. Subgraph matching query is to find out the subgraphs of data graph G which match a given query graph Q. Traditional methods can not deal with big data graphs due to their high computational complex. In this paper, we propose a distributed top-k subgraph search method over big graphs. The proposed method is designed at the level of single vertex and all vertices obtain their matching state separately without requiring global graph information. Therefore, it can be easily deployed in distributed platform like Hadoop. The evaluations of running time, number of messages and supersteps show the efficiency and scalability of the proposed method. 
    more » « less
  5. Subgraph matching query is to find out the subgraphs of data graph G which match a given query graph Q. Traditional methods can not deal with big data graphs due to their high computational complex. In this paper, we propose a distributed top-k subgraph search method over big graphs. The proposed method is designed at the level of single vertex and all vertices obtain their matching state separately without requiring global graph information. Therefore, it can be easily deployed in distributed platform like Hadoop. The evaluations of running time, number of messages and supersteps show the efficiency and scalability of the proposed method. 
    more » « less