skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification
Graph classes of bounded tree rank were introduced recently in the context of the model checking problem for first-order logic of graphs. These graph classes are a common generalization of graph classes of bounded degree and bounded treedepth, and they are a special case of graph classes of bounded expansion. We introduce a notion of decomposition for these classes and show that these decompositions can be efficiently computed. Also, a natural extension of our decomposition leads to a new characterization and decomposition for graph classes of bounded expansion (and an efficient algorithm computing this decomposition). We then focus on interpretations of graph classes of bounded tree rank. We give a characterization of graph classes interpretable in graph classes of tree rank 2. Importantly, our characterization leads to an efficient sparsification procedure: For any graph class 𝒞 interpretable in a graph class of tree rank at most 2, there is a polynomial time algorithm that to any G ∈ 𝒞 computes a (sparse) graph H from a fixed graph class of tree rank at most 2 such that G = I(H) for a fixed interpretation I. To the best of our knowledge, this is the first efficient "interpretation reversal" result that generalizes the result of Gajarský et al. [LICS 2016], who showed an analogous result for graph classes interpretable in classes of graphs of bounded degree.  more » « less
Award ID(s):
2202961
PAR ID:
10541010
Author(s) / Creator(s):
;
Editor(s):
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
297
ISSN:
1868-8969
ISBN:
978-3-95977-322-5
Page Range / eLocation ID:
297-297
Subject(s) / Keyword(s):
First-order model checking structural graph theory structural sparsity Theory of computation → Finite Model Theory Theory of computation → Fixed parameter tractability Mathematics of computing → Graph theory
Format(s):
Medium: X Size: 20 pages; 773198 bytes Other: application/pdf
Size(s):
20 pages 773198 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently. 
    more » « less
  2. A hole in a graph $$G$$ is an induced cycle of length at least four, and an even hole is a hole of even length. The diamond is the graph obtained from the complete graph $$K_4$$ by removing an edge. A pyramid is a graph consisting of a vertex $$a$$ called the apex and a triangle $$\{b_1, b_2, b_3\}$$ called the base, and three paths $$P_i$$ from $$a$$ to $$b_i$$ for $$1 \leq i \leq 3$$, all of length at least one, such that for $$i \neq j$$, the only edge between $$P_i \setminus \{a\}$$ and $$P_j \setminus \{a\}$$ is $$b_ib_j$$, and at most one of $$P_1$$, $$P_2$$, and $$P_3$$ has length exactly one. For a family $$\mathcal{H}$$ of graphs, we say a graph $$G$$ is $$\mathcal{H}$$-free if no induced subgraph of $$G$$ is isomorphic to a member of $$\mathcal{H}$$. Cameron, da Silva, Huang, and Vušković proved that (even hole, triangle)-free graphs have treewidth at most five, which motivates studying the treewidth of even-hole-free graphs of larger clique number. Sintiari and Trotignon provided a construction of (even hole, pyramid, $$K_4$$)-free graphs of arbitrarily large treewidth. Here, we show that for every $$t$$, (even hole, pyramid, diamond, $$K_t$$)-free graphs have bounded treewidth. The graphs constructed by Sintiari and Trotignon contain diamonds, so our result is sharp in the sense that it is false if we do not exclude diamonds. Our main result is in fact more general, that treewidth is bounded in graphs excluding certain wheels and three-path-configurations, diamonds, and a fixed complete graph. The proof uses “non-crossing decompositions” methods similar to those in previous papers in this series. In previous papers, however, bounded degree was a necessary condition to prove bounded treewidth. The result of this paper is the first to use the method of “non-crossing decompositions” to prove bounded treewidth in a graph class of unbounded maximum degree. 
    more » « less
  3. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy. 
    more » « less
  4. An interpretation is an operation that maps an input graph to an output graph by redefining its edge relation using a first-order formula. This rich framework includes operations such as taking the complement or a fixed power of a graph as (very) special cases. We prove that there is an FPT algorithm for the first-order model checking problem on classes of graphs which are first-order interpretable in classes of graphs with bounded local cliquewidth. Notably, this includes interpretations of planar graphs, and of classes of bounded genus in general. To obtain this result we develop a new tool which works in a very general setting of NIP classes and which we believe can be an important ingredient in obtaining similar results in the future. 
    more » « less
  5. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We study the classic problem of subgraph counting, where we wish to determine the number of occurrences of a fixed pattern graph H in an input graph G of n vertices. Our focus is on bounded degeneracy inputs, a rich family of graph classes that also characterizes real-world massive networks. Building on the seminal techniques introduced by Chiba-Nishizeki (SICOMP 1985), a recent line of work has built subgraph counting algorithms for bounded degeneracy graphs. Assuming fine-grained complexity conjectures, there is a complete characterization of patterns H for which linear time subgraph counting is possible. For every r ≥ 6, there exists an H with r vertices that cannot be counted in linear time. In this paper, we initiate a study of subquadratic algorithms for subgraph counting on bounded degeneracy graphs. We prove that when H has at most 9 vertices, subgraph counting can be done in Õ(n^{5/3}) time. As a secondary result, we give improved algorithms for counting cycles of length at most 10. Previously, no subquadratic algorithms were known for the above problems on bounded degeneracy graphs. Our main conceptual contribution is a framework that reduces subgraph counting in bounded degeneracy graphs to counting smaller hypergraphs in arbitrary graphs. We believe that our results will help build a general theory of subgraph counting for bounded degeneracy graphs. 
    more » « less