skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs
We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.  more » « less
Award ID(s):
2309707
PAR ID:
10588155
Author(s) / Creator(s):
; ; ;
Editor(s):
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
297
ISSN:
1868-8969
ISBN:
978-3-95977-322-5
Page Range / eLocation ID:
35:1-35:18
Subject(s) / Keyword(s):
approximate counting independent sets bipartite graphs graph containers Theory of computation → Approximation algorithms analysis Mathematics of computing → Approximation algorithms Theory of computation → Algorithm design techniques
Format(s):
Medium: X Size: 18 pages; 813823 bytes Other: application/pdf
Size(s):
18 pages 813823 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Butterflies are an important motif found in bipartite graphs that provide a structural way for finding dense regions within the graph. Beyond counting butterflies and enumerating them, other metrics and peeling for bipartite graphs are designed around counting butterfly motifs. The importance of counting butterflies has led to many works on efficient implementations for butterfly counting, given certain situational or hardware constraints. However, most algorithms are based on first counting the building block of the butterfly motif, and from that calculating the total possible number of butterflies in the graph. In this paper, using a linear algebra approach, we show that many provably correct algorithms for counting butterflies can be systematically derived. Moreover, we show how this formulation facilitates butterfly peeling algorithms that find the k-tip and k-wing subgraphs within a bipartite graph. 
    more » « less
  2. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We study the classic problem of subgraph counting, where we wish to determine the number of occurrences of a fixed pattern graph H in an input graph G of n vertices. Our focus is on bounded degeneracy inputs, a rich family of graph classes that also characterizes real-world massive networks. Building on the seminal techniques introduced by Chiba-Nishizeki (SICOMP 1985), a recent line of work has built subgraph counting algorithms for bounded degeneracy graphs. Assuming fine-grained complexity conjectures, there is a complete characterization of patterns H for which linear time subgraph counting is possible. For every r ≥ 6, there exists an H with r vertices that cannot be counted in linear time. In this paper, we initiate a study of subquadratic algorithms for subgraph counting on bounded degeneracy graphs. We prove that when H has at most 9 vertices, subgraph counting can be done in Õ(n^{5/3}) time. As a secondary result, we give improved algorithms for counting cycles of length at most 10. Previously, no subquadratic algorithms were known for the above problems on bounded degeneracy graphs. Our main conceptual contribution is a framework that reduces subgraph counting in bounded degeneracy graphs to counting smaller hypergraphs in arbitrary graphs. We believe that our results will help build a general theory of subgraph counting for bounded degeneracy graphs. 
    more » « less
  3. We give an FPRAS for counting q-colorings for even on almost every Δ-regular bipartite graph. This improves significantly upon the previous best bound of by Jenssen, Keevash, and Perkins (SODA'19). Analogously, for the hard-core model on independentsets weighted by λ > 0, we present an FPRAS for estimating the partition function when , which improves upon previous results by an Ω(log Δ) factor. Our results for the colorings and hard-core models follow from a general result that applies to arbitrary spin systems. Our main contribution is to show how to elevate probabilistic/analytic bounds on the marginal probabilities for the typical structure of phases on random bipartite regular graphs into efficient algorithms, using the polymer method. We further show evidence that our results for colorings and independent sets are within a constant factor of best possible using current polymer-method approaches. 
    more » « less
  4. Butterflies are the smallest non-trivial subgraph in bipartite graphs, and therefore having efficient computations for analyzing them is crucial to improving the quality of certain applications on bipartite graphs. In this paper, we design a framework called ParButterfly that contains new parallel algorithms for the following problems on processing butterflies: global counting, per-vertex counting, per-edge counting, tip decomposition (vertex peeling), and wing decomposition (edge peeling). The main component of these algorithms is aggregating wedges incident on subsets of vertices, and our framework supports different methods for wedge aggregation, including sorting, hashing, histogramming, and batching. In addition, ParButterfly supports different ways of ranking the vertices to speed up counting, including side ordering, approximate and exact degree ordering, and approximate and exact complement coreness ordering. For counting, ParButterfly also supports both exact computation as well as approximate computation via graph sparsification. We prove strong theoretical guarantees on the work and span of the algorithms in ParButterfly. We perform a comprehensive evaluation of all of the algorithms in ParButterfly on a collection of real-world bipartite graphs using a 48-core machine. Our counting algorithms obtain significant parallel speedup, outperforming the fastest sequential algorithms by up to 13.6× with a self-relative speedup of up to 38.5×. Compared to general subgraph counting solutions, we are orders of magnitude faster. Our peeling algorithms achieve self-relative speedups of up to 10.7× and outperform the fastest sequential baseline by up to several orders of magnitude. 
    more » « less
  5. Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so‐called high‐temperature regime, where the interaction between neighboring spins is “weak.” Instead, recent work of Jenssen, Keevash, and Perkins yields polynomial‐time algorithms in the low‐temperature regime on bounded‐degree (bipartite) expander graphs using polymer models and the cluster expansion. In order to speed up these algorithms (so the exponent in the run time does not depend on the degree bound) we present a Markov chain for polymer models and show that it is rapidly mixing under exponential decay of polymer weights. This yields, for example, an‐time sampling algorithm for the low‐temperature ferromagnetic Potts model on bounded‐degree expander graphs. Combining our results for the hard‐core and Potts models with Markov chain comparison tools, we obtain polynomial mixing time for Glauber dynamics restricted to appropriate portions of the state space. 
    more » « less