skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations
The effects of horizontal resolution and wave drag damping on the semidiurnal M2 tidal energetics are studied for two realistically-forced global HYbrid Coordinate Ocean Model (HYCOM) simulations with 41 layers and horizontal resolutions of 8 km (H12) and 4 km (H25). In both simulations, the surface tidal error is minimized by tuning the strength of the linear wave drag, which is a parameterization of the surface-tide energy conversion to the unresolved baroclinic wave modes. In both simulations the M2 surface tide error with TPXO8-atlas, an altimetry constrained model, is 2.6 cm. Compared to H12, the surface tide energy conversion to the resolved vertical modes is increased by 50% in H25. This coincides with an equivalent reduction in the tuned loss of energy from the surface tide to the wave drag. For the configurations studied here, the horizontal and not the vertical resolution is the factor limiting the number of vertical modes that are resolved in most of the global ocean: modes 1–2 in H12 and modes 1–5 in H25. The wave drag also dampens the resolved internal tides. The 40% reduction in wave-drag strength does not result in a proportional increase in the mode-1 energy density in H25. In the higher-resolution simulations, topographic mode-scattering and wave–wave interactions are better resolved. This allows for an energy flux out of mode 1 to the higher modes, mitigating the need for an internal tide damping term. The HYCOM simulations are validated with analytical conversion models and altimetry-inferred sea-surface height, fluxes, and surface tide dissipation. H25 agrees best with these data sets to within 10%. To facilitate the comparison of stationary tide signals extracted from time series with different durations, we successfully apply a spatially-varying correction factor.  more » « less
Award ID(s):
1537158
PAR ID:
10541054
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Ocean Modelling
Volume:
152
Issue:
C
ISSN:
1463-5003
Page Range / eLocation ID:
101656
Subject(s) / Keyword(s):
Numerical models Internal tides Wave damping Vertical modes
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this study, we diagnose the spatial variability in the energetics of tidally generated diurnal, semidiurnal, and supertidal ( cycles per day) internal wave vertical modes (up to mode 6) in a 30‐day forward global ocean model simulation with a 4‐km grid spacing and 41 layers. The simulation is forced with realistic tides and atmospheric fields. Diurnal modes are resolved beyond mode 6, semidiurnal modes are resolved up to mode 4, and supertidal modes are resolved up to mode 2, in agreement with a canonical horizontal resolution criterion. The meridional trends in the kinetic to available potential energy ratios of these resolved modes agree with an internal wave consistency relation. The supertidal band is dominated by the higher harmonics of the diurnal and semidiurnal tides. Its higher harmonic energy projects on the internal wave dispersion curves in frequency‐wavenumber spectra and is captured mostly by the terdiurnal and quarterdiurnal mode‐1 waves. Terdiurnal modes are mostly generated in the west Pacific, where diurnal internal tides are strong. In contrast, quarterdiurnal modes occur at all longitudes near strong semidiurnal generation sites. The globally integrated energy in the supertidal band is about one order of magnitude smaller than the energy in the tidal band. The supertidal energy as a fraction of the tidal energy is elevated along semidiurnal internal wave beams in the tropics. We attribute this to near‐resonant interactions between tidal modes of the same mode number. 
    more » « less
  2. The M2internal tide field contains waves of various baroclinic modes and various horizontal propagation directions. This paper presents a technique for decomposing the sea surface height (SSH) field of the multimodal multidirectional internal tide. The technique consists of two steps: first, different baroclinic modes are decomposed by two-dimensional (2D) spatial filtering, utilizing their different horizontal wavelengths; second, multidirectional waves in each mode are decomposed by 2D plane wave analysis. The decomposition technique is demonstrated using the M2internal tide field simulated by the MITgcm. This paper focuses on a region lying off the U.S. West Coast ranging 20°–50°N, 220°–245°E. The lowest three baroclinic modes are separately resolved from the internal tide field; each mode is further decomposed into five waves of arbitrary propagation directions in the horizontal. The decomposed fields yield unprecedented details on the internal tide’s generation and propagation, which cannot be observed in the harmonically fitted field. The results reveal that the mode-1 M2internal tide in the study region is dominantly from the Hawaiian Ridge to the west but also generated locally at the Mendocino Ridge and continental slope. The mode-2 and mode-3 M2internal tides are generated at isolated seamounts, as well as at the Mendocino Ridge and continental slope. The Mendocino Ridge radiates both southbound and northbound M2internal tides for all three modes. Their propagation distances decrease with increasing mode number: mode-1 waves can travel over 2000 km, while mode-3 waves can only be tracked for 300 km. The decomposition technique may be extended to other tidal constituents and to the global ocean. 
    more » « less
  3. An internal tide model, ZHAO30yr, is developed using 30 years of satellite altimetry sea surface height (SSH) measurements from 1993 to 2022 by a recently improved mapping technique that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. Prerequisite wavelengths are calculated using climatological annual mean hydrographic profiles in the World Ocean Atlas 2018. ZHAO30yr only extracts the 30-year phase-locked internal tide component, lacking the incoherent component caused by the time-varying ocean environment. The model contains 12 internal tide constituents: eight mode-1 constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) and four mode-2 constituents (M2, S2, K1, and O1). Model errors are estimated to be lower than 1 mm in the SSH amplitude on global average, thanks to the long data record and improved mapping technique. The model is evaluated by making internal tide correction to independent altimetry data for 2023. A total of 10 constituents (but for K2 and Q1) can reduce variance on global average. K2 and Q1 can only cause variance reductions in their source regions. The model decomposes the multiconstituent, multimodal, multidirectional internal tide field into a series of simple plane waves at each grid point. The decomposition reveals unprecedented features previously masked by multiwave interference. The model divides each internal tide constituent into components by propagation direction. The directionally decomposed components show numerous long-range internal tidal beams associated with notable topographic features. The semidiurnal internal tidal beams off the Amazon shelf and the diurnal internal tidal beams in the Arabian Sea are examined in detail. ZHAO30yr is available at https://doi.org/10.6084/m9.figshare.28078523 (Zhao, 2024b). Model errors are available at https://doi.org/10.6084/m9.figshare.28559978.v3 (Zhao, 2025). 
    more » « less
  4. Abstract The decay of the low‐mode internal tide due to the superharmonic energy cascade is investigated in a realistically forced global Hybrid Coordinate Ocean Model simulation with 1/25° (4 km) horizontal grid spacing. Time‐mean and depth‐integrated supertidal kinetic energy is found to be largest near low‐latitude internal tide generation sites, such as the Bay of Bengal, Amazon Shelf, and Mascarene Ridge. The supertidal kinetic energy can make up to 50% of the total internal tide kinetic energy several hundred kilometers from the generation sites. As opposed to the tidal flux divergence, the supertidal flux divergence does not correlate with the barotropic to baroclinic energy conversion. Instead, the time‐mean and depth‐integrated supertidal flux divergence correlates with the nonlinear kinetic energy transfers from (sub)tidal to supertidal frequency bands as estimated with a novel coarse‐graining approach. The regular spaced banding patterns of the surface‐intensified nonlinear energy transfers are attributed to semidiurnal mode 1 and mode 2 internal waves that interfere constructively at the surface. This causes patches where both surface tidal kinetic energy and nonlinear energy transfers are elevated. The simulated internal tide off the Amazon Shelf steepens significantly near these patches, generating solitary‐like waves in good agreement with Synthetic Aperture Radar imagery. Globally, we find that regions of high supertidal energy flux also show a high correlation with observed instances of internal solitary waves. 
    more » « less
  5. Abstract The geographical variability, frequency content, and vertical structure of near‐surface oceanic kinetic energy (KE) are important for air‐sea interaction, marine ecosystems, operational oceanography, pollutant tracking, and interpreting remotely sensed velocity measurements. Here, KE in high‐resolution global simulations (HYbrid Coordinate Ocean Model; HYCOM, and Massachusetts Institute of Technology general circulation model; MITgcm), at the sea surface (0 m) and at 15 m, are compared with KE from undrogued and drogued surface drifters, respectively. Global maps and zonal averages are computed for low‐frequency (<0.5 cpd), near‐inertial, diurnal, and semidiurnal bands. Both models exhibit low‐frequency equatorial KE that is low relative to drifter values. HYCOM near‐inertial KE is higher than in MITgcm, and closer to drifter values, probably due to more frequently updated atmospheric forcing. HYCOM semidiurnal KE is lower than in MITgcm, and closer to drifter values, likely due to inclusion of a parameterized topographic internal wave drag. A concurrent tidal harmonic analysis in the diurnal band demonstrates that much of the diurnal flow is nontidal. We compute simple proxies of near‐surface vertical structure—the ratio 0 m KE/(0 m KE + 15 m KE) in model outputs, and the ratio undrogued KE/(undrogued KE + drogued KE) in drifter observations. Over most latitudes and frequency bands, model ratios track the drifter ratios to within error bars. Values of this ratio demonstrate significant vertical structure in all frequency bands except the semidiurnal band. Latitudinal dependence in the ratio is greatest in diurnal and low‐frequency bands. 
    more » « less