Stable lithium isotopes (δ7Li) of CaCO3 minerals have increasingly been used as a tracer for changes in silicate weathering processes. However, there is limited understanding of the influence of physical and chemical conditions on δ7Li values of CaCO3 minerals during their formation in aqueous solutions. Here, we examined Li isotope fractionation in inorganic calcite and aragonite precipitation experiments with systematic manipulations of solution pH and concentrations of total dissolved inorganic carbon species ([DIC] ≈ [HCO3−] + [CO32−]) and calcium ion (Ca2+). Calcite and aragonite samples had δ7Li values lower than those of dissolved Li in solutions by about 3‰ and 16‰, respectively, indicating preferential uptake of the lighter 6Li isotopes. Aragonite consistently had δ7Li values lower than those of calcite by ∼13‰, likely due to differences in Li coordination and thereby the strength of bonds formed by/with Li within the respective mineral structure. We observed no statistically significant changes in aragonite nor calcite δ7Li values in response to changing solution pH, [DIC], [Ca2+], and CaCO3 precipitation rates, indicating our solution chemistry manipulations imposed little effect on Li isotope fractionation. These findings lead us to argue that the observed Li isotope fractionations in calcite and aragonite with respect to dissolved Li in solutions are dominated by equilibrium isotope effects, and that kinetic effects for δ7Li values in CaCO3 are either non-existent or too small to be expressed under our experimental conditions.
more »
« less
Controls on Li partitioning and isotopic fractionation in inorganic calcite
The δ7Li of marine carbonates has been interpreted as an archive of the evolution of seawater δ7Li, and therefore continental weathering, through geological time. However, little is known about the incorporation of Li into calcium carbonate minerals and, consequently, the controls on Li partitioning (DLi) and isotopic fractionation (Δ7Lisolid-fluid) associated with Li incorporation. Crucially, we lack a fundamental understanding of how Li partitioning and Δ7Lisolid-fluid change in response to the chemical and physical conditions of crystal formation. Here, we present DLi and Δ7Lisolid-fluid data from a series of inorganic calcite precipitation experiments where temperature, and solution pH and dissolved inorganic carbon (DIC) were independently varied. We find DLi values in the range 0.8–1.5 × 10−3, which show no relationship with temperature, a strong positive correlation with pH, and a weak positive correlation with DIC. At face value, these patterns are inconsistent with the results of previous precipitation studies. However, the correlations with pH and DIC are consistent with a strong precipitation rate control on DLi that aligns well with previous data, with a likely secondary influence from the incorporation of Li-HCO30 ion pairs from solution. We find Δ7Lisolid-fluid values in the range −6 to −2 ‰, which show no relationship with temperature or pH, and a weak positive correlation with DIC and crystal precipitation rate. These results do not agree with previously published data. Considered alongside previously published data, we observe no consistent relationship between Δ7Lisolid-fluid and any reported physical or chemical experimental parameter, highlighting the need for substantial further work to determine whether systematic controls on Li isotopic fractionation exist in carbonate minerals, and whether they may be environmentally significant.
more »
« less
- PAR ID:
- 10541082
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geochimica et Cosmochimica Acta
- Volume:
- 382
- Issue:
- C
- ISSN:
- 0016-7037
- Page Range / eLocation ID:
- 91 to 102
- Subject(s) / Keyword(s):
- Calcite Precipitation Lithium Partitioning Fractionation Isotope Inorganic
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium isotopes (δ7Li) in coals have been shown to increase with thermal maturity, suggesting preferential release of 6Li from kerogen to porefluids. This has important implications for paleoclimate studies based on δ7Li of buried marine carbonates, which may incorporate Li from porefluids during recrystallization. Here, the Li content and isotopic composition of macerals from two coal seams intruded by dikes, were studied as a function of temperature across a thermal gradient into the unmetamorphosed coal. Samples were collected in Colorado (USA) from a Vermejo Fm. coal seam intruded by a mafic-lamprophyre dike and compared to a Dutch Creek No.2 coal seam intruded by felsic-porphyry dike; a potential source of Li-rich fluids. The Li-content and Li-isotope compositions of coal macerals were measured in situ by Secondary Ion Mass Spectrometry (SIMS). The macerals of the Vermejo coal samples, buried to VRo 0.68% (Tmax = 104 ◦C), contained <1.5 μg/g Li with an average vitrinite δ7Li of −28.4 ± 1.6‰, while liptinite and inertinite were heavier, averaging −15.4 ± 3.6‰ and − 10.5 ± 3.7‰, respectively. The contact metamorphosed vitrinite/coke showed the greatest change with temperature with δ7Li 18 to 37‰ heavier than the unmetamorphosed vitrinite. The Dutch Creek coal, buried to VRo 1.15% (Tmax = 147 ◦C), prior to dike emplacement, may have released Li during burial, as less isotopic change was observed between contact metamorphosed and unmetamorphosed macerals. Overall, Li contents were < 1 μg/g, and the vitrinite in metamorphosed coal had δ7Li values 8 to 21‰ heavier than the unmetamorphosed coal. SIMS measurements on macerals near the dike did not show an increase in Li-content indicative of Li derived from dike fluids, however previous bulk measurements that included silicates showed slightly higher (2-3 μg/g) Li-contents near the dike, suggesting possible Li incorporation from dike fluid into metamorphic silicates. A negative correlation was observed between Li-content and 12C+/30Si+ count ratios, indicating that at metamorphic temperatures Li becomes concentrated in silicates.more » « less
-
Teagle, Damon A (Ed.)The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8 107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a 1) 1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels.more » « less
-
Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.more » « less
-
Abstract Most Earth surface carbonates precipitate out of isotopic equilibrium with their host solution, complicating the use of stable isotopes in paleoenvironment reconstructions. Disequilibrium can arise from exchange reactions in the DIC‐H2O system as well as during crystal growth reactions in the DIC‐CaCO3system. Existing models account for kinetic isotope effects (KIEs) in these systems separately but the models have yet to be combined in a general framework. Here, an open‐system box model is developed for describing disequilibrium carbon, oxygen, and clumped (Δ47, Δ48, and Δ49) isotope effects in the CaCO3‐DIC‐H2O system. The model is used to simulate calcite precipitation experiments in which the fluxes and isotopic compositions of CO2and CaCO3were constrained. Using a literature compilation of equilibrium and kinetic fractionation factors, modeledδ18O and Δ47values of calcite are in good agreement with the experimental data covering a wide range in crystal growth rate and solution pH. This relatively straightforward example provides a foundation for adapting the model to other situations involving CO2absorption (e.g., corals, foraminifera, and high‐pH travertines) or degassing (e.g., speleothems, low‐pH travertines, and cryogenic carbonates) and/or mixing with other dissolved inorganic carbon sources.more » « less
An official website of the United States government

