skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: River restoration can increase carbon storage but is not yet a suitable basis for carbon credits
Abstract Increasing organic carbon storage in river corridors (channels and floodplains) is a potential cobenefit of some river restoration approaches, raising the possibility of using restoration to produce carbon credits and, therefore, increase restoration funding. However, the uncertainty already associated with existing carbon credits is compounded in river corridors, which are dynamic on daily, seasonal, annual, and longer timescales. We currently do not know how much river restoration approaches could increase carbon storage or how significant increased organic carbon storage from restoration would be compared with other forms of climate mitigation. We also do not know whether river corridor carbon credits could meet market needs for quickly established, stable, and simple credits. Therefore, we argue that biophysical and political economic uncertainties make river corridor restoration carbon credits currently unfeasible but that research on river restoration projects would demonstrate whether restoration carbon credits could be feasible in the future.  more » « less
Award ID(s):
2237366
PAR ID:
10541140
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
BioScience
Volume:
74
Issue:
10
ISSN:
0006-3568
Format(s):
Medium: X Size: p. 717-724
Size(s):
p. 717-724
Sponsoring Org:
National Science Foundation
More Like this
  1. River corridors integrate the active channels, geomorphic floodplain and riparian areas, and hyporheic zone while receiving inputs from the uplands and groundwater and exchanging mass and energy with the atmosphere. Here, we trace the development of the contemporary understanding of river corridors from the perspectives of geomorphology, hydrology, ecology, and biogeochemistry. We then summarize contemporary models of the river corridor along multiple axes including dimensions of space and time, disturbance regimes, connectivity, hydrochemical exchange flows, and legacy effects of humans. We explore how river corridor science can be advanced with a critical zone framework by moving beyond a primary focus on discharge-based controls toward multi-factor models that identify dominant processes and thresholds that make predictions that serve society. We then identify opportunities to investigate relationships between large-scale spatial gradients and local-scale processes, embrace that riverine processes are temporally variable and interacting, acknowledge that river corridor processes and services do not respect disciplinary boundaries and increasingly need integrated multidisciplinary investigations, and explicitly integrate humans and their management actions as part of the river corridor. We intend our review to stimulate cross-disciplinary research while recognizing that river corridors occupy a unique position on the Earth's surface. 
    more » « less
  2. Abstract Carbon offsets are widely used by individuals, corporations, and governments to mitigate their greenhouse gas emissions on the assumption that offsets reflect equivalent climate benefits achieved elsewhere. These climate‐equivalence claims depend on offsets providing real and additional climate benefits beyond what would have happened, counterfactually, without the offsets project. Here, we evaluate the design of California's prominent forest carbon offsets program and demonstrate that its climate‐equivalence claims fall far short on the basis of directly observable evidence. By design, California's program awards large volumes of offset credits to forest projects with carbon stocks that exceed regional averages. This paradigm allows for adverse selection, which could occur if project developers preferentially select forests that are ecologically distinct from unrepresentative regional averages. By digitizing and analyzing comprehensive offset project records alongside detailed forest inventory data, we provide direct evidence that comparing projects against coarse regional carbon averages has led to systematic over‐crediting of 30.0 million tCO2e (90% CI: 20.5–38.6 million tCO2e) or 29.4% of the credits we analyzed (90% CI: 20.1%–37.8%). These excess credits are worth an estimated $410 million (90% CI: $280–$528 million) at recent market prices. Rather than improve forest management to store additional carbon, California's forest offsets program creates incentives to generate offset credits that do not reflect real climate benefits. 
    more » « less
  3. Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science. 
    more » « less
  4. Ecological corridors are one of the best, and possibly only viable, management tools to maintain biodiversity at large scales and to allow species, and ecological processes, to track climate change. This document has been assembled as a summary of the best available information about managing these systems. Our aim with this paper is to provide managers with a convenient guidance document and tool to assist in applying scientific management principles to management of corridors. We do not cover issues related to corridor design or political buy in, but focus on how a corridor should be managed once it has been established. The first part of our paper outlines the history and value of ecological corridors. We next describe our methodologies for developing this guidance document. We then summarize the information about the impacts of linear features on corridors and strategies for dealing with them—specifically, we focus on the effects of roads, canals, security fences, and transmission lines. Following the description of effects, we provide a summary of the best practices for managing the impacts of linear barriers. Globally, many corridors are established in the flood plains of stream and rivers and occur in riparian areas associated with surface waters. Therefore, we next provide guidance on how to manage corridors that occur in riparian areas. We then segue into corridors and the urban/suburban environment, and summarize strategies for dealing with urban development within corridors. The final major anthropic land use that may affect corridor management is cultivation and grazing agriculture. We end this review by identifying gaps in knowledge pertaining to how best to manage corridors. 
    more » « less
  5. Abstract The heterogeneity of carbon dioxide (CO2) and methane (CH4) sources within and across watersheds presents a challenge to understanding the contributions of different ecosystem patch types to stream corridor and watershed carbon cycling. Changing hydrologic connections between corridor patches (e.g., streams, vernal pools, hillslopes) can influence stream corridor greenhouse gas emissions, but the spatiotemporal dynamics of emissions within and among corridor patches are not well‐quantified. To identify patterns and sources of carbon emissions across stream corridors, we measured gas concentrations and fluxes over two summers at Coweeta Hydrologic Laboratory, NC. We sampled CO2and CH4along four stream channels (including flowing and dry reaches), adjacent vernal pools, and riparian hillslopes. Stream CO2and CH4emissions were spatially heterogeneous. All streams were sources of CO2to the atmosphere (median = 97.2 mmol m−2d−1) but were sources or sinks of CH4depending on location (−0.19 to 4.57 mmol m−2d−1). CO2emissions were lower during the drier of two sampling years but were stable from month to month in the drier summer. CO2and CH4emissions also varied by both corridor and patch type; the presence of a vernal pool in the corridor had the strongest impact on emissions. Vernal pool patches emitted more CO2and CH4(246 and 1.95 mmol m−2d−1, respectively) than their adjacent streams. High resolution sampling of carbon fluxes from patches within and among stream corridors improves our understanding of the connections between terrestrial, riparian, and aquatic zones in a watershed and their contributions to overall catchment carbon emissions. 
    more » « less