River corridors integrate the active channels, geomorphic floodplain and riparian areas, and hyporheic zone while receiving inputs from the uplands and groundwater and exchanging mass and energy with the atmosphere. Here, we trace the development of the contemporary understanding of river corridors from the perspectives of geomorphology, hydrology, ecology, and biogeochemistry. We then summarize contemporary models of the river corridor along multiple axes including dimensions of space and time, disturbance regimes, connectivity, hydrochemical exchange flows, and legacy effects of humans. We explore how river corridor science can be advanced with a critical zone framework by moving beyond a primary focus on discharge-based controls toward multi-factor models that identify dominant processes and thresholds that make predictions that serve society. We then identify opportunities to investigate relationships between large-scale spatial gradients and local-scale processes, embrace that riverine processes are temporally variable and interacting, acknowledge that river corridor processes and services do not respect disciplinary boundaries and increasingly need integrated multidisciplinary investigations, and explicitly integrate humans and their management actions as part of the river corridor. We intend our review to stimulate cross-disciplinary research while recognizing that river corridors occupy a unique position on the Earth's surface.
more »
« less
Toward Best Management Practices for Ecological Corridors
Ecological corridors are one of the best, and possibly only viable, management tools to maintain biodiversity at large scales and to allow species, and ecological processes, to track climate change. This document has been assembled as a summary of the best available information about managing these systems. Our aim with this paper is to provide managers with a convenient guidance document and tool to assist in applying scientific management principles to management of corridors. We do not cover issues related to corridor design or political buy in, but focus on how a corridor should be managed once it has been established. The first part of our paper outlines the history and value of ecological corridors. We next describe our methodologies for developing this guidance document. We then summarize the information about the impacts of linear features on corridors and strategies for dealing with them—specifically, we focus on the effects of roads, canals, security fences, and transmission lines. Following the description of effects, we provide a summary of the best practices for managing the impacts of linear barriers. Globally, many corridors are established in the flood plains of stream and rivers and occur in riparian areas associated with surface waters. Therefore, we next provide guidance on how to manage corridors that occur in riparian areas. We then segue into corridors and the urban/suburban environment, and summarize strategies for dealing with urban development within corridors. The final major anthropic land use that may affect corridor management is cultivation and grazing agriculture. We end this review by identifying gaps in knowledge pertaining to how best to manage corridors.
more »
« less
- Award ID(s):
- 2041101
- PAR ID:
- 10608761
- Publisher / Repository:
- MDPI LAND
- Date Published:
- Journal Name:
- Land
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 140
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science.more » « less
-
Abstract Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.more » « less
-
Abstract Relative to their limited areal extent, riparian ecosystems are disproportionately important in regulating inorganic solute export from agricultural landscapes. We investigated spatial patterns of solute concentrations in surface and ground waters of stream corridors to infer the dominant hydrologic transport and biogeochemical pathways that influence riparian nitrate and sulfate processing from uplands to streams. We selected three reaches of stream corridors draining an agricultural landscape that vary in hydrologic connection with upland aquifers. Non‐irrigated crop production dominates land use in the study area and influences the quality of upland groundwater draining to the stream corridors. We interpret patterns in solute concentrations of riparian groundwater and stream water relative to upland groundwater to infer the influences of biogeochemical processing and hydrologic connectivity. Excess nitrate from cultivated soils is evident in upland groundwater concentrations that consistently exceed the U.S. Environmental Protection Agency public drinking water standard. Nitrate and oxygen concentrations in riparian groundwaters were consistently lower than in terrace groundwater and adjacent stream waters, suggesting rapid consumption of oxygen and influence of anaerobic metabolic reduction processes in subsurface flow. Sulfate concentrations in streams were higher than in terrace groundwater, likely due to weathering of shale‐derived substrate in riparian aquifers. The degree of solute mitigation or augmentation by riparian biogeochemical processes depended on the geomorphic context that controlled the fraction of upland water passing through the riparian substrate. Observed net nitrate losses with net sulfate gains from uplands to stream channels reflect flow paths through a complex distribution of redox conditions throughout the riparian areas, emphasizing the importance of considering riparian area heterogeneity in predicting solute export in streams. This research contributes to understanding how stream corridor substrate and geomorphic context controls the biogeochemical and hydrologic processes influencing the quality of water exported from agricultural landscapes.more » « less
-
null (Ed.)Municipal governments are emerging as important stakeholders in managing the populations and geographic distributions of whitetailed deer (Odocoileus virginianus) in urban and suburban areas of the Northeastern United States. To understand the variation in municipal- level concerns about deer and municipal policies related to deer management, we distributed a questionnaire to all 351 municipalities across the Commonwealth of Massachusetts in 2017 (response rate = 74%) and collected data on local bylaws that influence hunting access. We found that concerns about deer vary across the state and some municipalities are taking action to manage increasing deer populations. In particular, our analysis established the importance of deer and deer management in the suburban regions of Massachusetts, while uncovering many local differences within similar suburban areas. The varying relationships between deer populations, public concerns, and municipal actions illustrated the complex role of municipal decisionmakers in shaping wildlife management programs.more » « less
An official website of the United States government

