skip to main content


Title: Quantum-enhanced learning with a controllable bosonic variational sensor network
Abstract

The emergence of quantum sensor networks has presented opportunities for enhancing complex sensing tasks, while simultaneously introducing significant challenges in designing and analyzing quantum sensing protocols due to the intricate nature of entanglement and physical processes. Supervised learning assisted by an entangled sensor network (SLAEN) (Zhuang and Zhang 2019Phys. Rev.X9041023) represents a promising paradigm for automating sensor-network design through variational quantum machine learning. However, the original SLAEN, constrained by the Gaussian nature of quantum circuits, is limited to learning linearly separable data. Leveraging the universal quantum control available in cavity quantum electrodynamics experiments, we propose a generalized SLAEN capable of handling nonlinear data classification tasks. We establish a theoretical framework for physical-layer data classification to underpin our approach. Through training quantum probes and measurements, we uncover a threshold phenomenon in classification error across various tasks—when the energy of probes exceeds a certain threshold, the error drastically diminishes to zero, providing a significant improvement over the Gaussian SLAEN. Despite the non-Gaussian nature of the problem, we offer analytical insights into determining the threshold and residual error in the presence of noise. Our findings carry implications for radio-frequency photonic sensors and microwave dark matter haloscopes.

 
more » « less
Award ID(s):
2240641 2326746
PAR ID:
10541161
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
9
Issue:
4
ISSN:
2058-9565
Format(s):
Medium: X Size: Article No. 045040
Size(s):
Article No. 045040
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the quality of transmission (QoT) of a lightpath before its establishment is a critical procedure for efficient design and management of optical networks. Recently, supervised machine learning (ML) techniques for QoT estimation have been proposed as an effective alternative to well-established, yet approximated, analytic models that often require the introduction of conservative margins to compensate for model inaccuracies and uncertainties. Unfortunately, to ensure high estimation accuracy, the training set (i.e., the set of historical field data, or “samples,” required to train these supervised ML algorithms) must be very large, while in real network deployments, the number of monitored/monitorable lightpaths is limited by several practical considerations. This is especially true for lightpaths with an above-threshold bit error rate (BER) (i.e., malfunctioning or wrongly dimensioned lightpaths), which are infrequently observed during network operation. Samples with above-threshold BERs can be acquired by deploying probe lightpaths, but at the cost of increased operational expenditures and wastage of spectral resources. In this paper, we propose to useactive learningto reduce the number of probes needed for ML-based QoT estimation. We build an estimation model based on Gaussian processes, which allows iterative identification of those QoT instances that minimize estimation uncertainty. Numerical results using synthetically generated datasets show that, by using the proposed active learning approach, we can achieve the same performance of standard offline supervised ML methods, but with a remarkable reduction (at least 5% and up to 75%) in the number of training samples.

     
    more » « less
  2. Recent advances in Internet of Things (IoT) technologies have sparked significant interest toward developing learning-based sensing applications on embedded edge devices. These efforts, however, are being challenged by the complexities of adapting to unforeseen conditions in an open-world environment, mainly due to the intensive computational and energy demands exceeding the capabilities of edge devices. In this article, we propose OpenSense, an open-world time-series sensing framework for making inferences from time-series sensor data and achieving incremental learning on an embedded edge device with limited resources. The proposed framework is able to achieve two essential tasks, inference and incremental learning, eliminating the necessity for powerful cloud servers. In addition, to secure enough time for incremental learning and reduce energy consumption, we need to schedule sensing activities without missing any events in the environment. Therefore, we propose two dynamic sensor scheduling techniques: 1) a class-level period assignment scheduler that finds an appropriate sensing period for each inferred class and 2) a Q-learning-based scheduler that dynamically determines the sensing interval for each classification moment by learning the patterns of event classes. With this framework, we discuss the design choices made to ensure satisfactory learning performance and efficient resource usage. Experimental results demonstrate the ability of the system to incrementally adapt to unforeseen conditions and to efficiently schedule to run on a resource-constrained device. 
    more » « less
  3. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  4. Abstract

    Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models, while preserving data privacy. Although recent advances in QFL span different tasks like classification while leveraging several data types, no prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions useful to analyze the performance of distributed quantum sensing networks. In this paper, a novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed. The proposedfederated QLSTM (FedQLSTM)framework is exploited for performing the task of function approximation. In this regard, three key use cases are presented: Bessel function approximation, sinusoidal delayed quantum feedback control function approximation, and Struve function approximation. Simulation results confirm that, for all considered use cases, the proposed FedQLSTM framework achieves a faster convergence rate under one local training epoch, minimizing the overall computations, and saving 25–33% of the number of communication rounds needed until convergence compared to an FL framework with classical LSTM models.

     
    more » « less
  5. In this article, we enhanced the capability of SIMON (Simulator for Optical Networks) by considering the nonlinear effect of the optical network components and different industry network devices. This is achieved by using an optical route planning library called GNPy (Gaussian Noise model in python) as the calculation model within SIMON. SIMON is implemented in C++ and has mainly been used as an optical network learning tool for studying the performance of wavelength-routed optical networks. It measures the network blocking probability by taking into consideration the optical device characteristics. SIMON can capture the most significant impairments when estimating the Bit-Error Rate (BER) but does not consider fiber dispersion and non-linearities. These impairments can be significant when simulating a large-scale network. GNPy, on the other hand, considers those physical impairments and can give a more accurate signal-to-noise ratio (SNR) estimation validated by real-world measurements. By integrating GNPy with SIMON, we are able to set a minimum SNR threshold, which must be satisfied by any call set up in the network. The integration of SIMON and GNPy makes the resulting simulator not only suitable for academic learning but also valuable for real-world network planning, evaluation, and deployment of optical networks. 
    more » « less