Hybrid quantum systems are essential for the realization of distributed quantum networks. In particular, piezo-mechanics operating at typical superconducting qubit frequencies features low thermal excitations, and offers an appealing platform to bridge superconducting quantum processors and optical telecommunication channels. However, integrating superconducting and optomechanical elements at cryogenic temperatures with sufficiently strong interactions remains a tremendous challenge. Here, we report an integrated superconducting cavity piezo-optomechanical platform where 10 GHz phonons are resonantly coupled with photons in a superconducting cavity and a nanophotonic cavity at the same time. Taking advantage of the large piezo-mechanical cooperativity (
We design and test a low-loss interface between superconducting three-dimensional microwave cavities and two-dimensional circuits, where the coupling rate is highly tunable. This interface seamlessly integrates a loop antenna and a Josephson junction-based coupling element. We demonstrate that the loss added by connecting this interface to the cavity is 1.28 kHz, corresponding to an inverse quality factor of 1/(4.5×106). Furthermore, we show that the cavity's external coupling rate to a 50 Ω transmission line can be tuned from negligibly small to over 3 orders of magnitude larger than its internal loss rate in a characteristic time of 3.2 ns. This switching speed does not impose additional limits on the coupling rate because it is much faster than the coupling rate. Moreover, the coupler can be controlled by low frequency signals to avoid interference with microwave signals near the cavity or qubit frequencies. Finally, the coupling element introduces a 0.04 Hz/photon self-Kerr nonlinearity to the cavity, remaining linear in high photon number operations.
more » « less- Award ID(s):
- 1734006
- PAR ID:
- 10541281
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 123
- Issue:
- 1
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract C em ~7) and the enhanced optomechanical coupling boosted by a pulsed optical pump, we demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion. This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons. -
Microwave cavity haloscopes are among the most sensitive direct detection experiments searching for dark matter axions via their coupling to photons. When the power of the expected microwave signal due to axion–photon conversion is on the order of 10−24 W, having the ability to validate the detector response and analysis procedure by injecting realistic synthetic axion signals becomes helpful. Here, we present a method based on frequency hopping spread spectrum for synthesizing axion signals in a microwave cavity haloscope experiment. It allows us to generate a narrow and asymmetric shape in frequency space that mimics an axion’s spectral distribution, which is derived from a Maxwell–Boltzmann distribution. In addition, we show that the synthetic axion’s power can be calibrated with reference to the system noise. Compared to the synthetic axion injection in the Haloscope At Yale Sensitive to Axion Cold dark matter (HAYSTAC) Phase I, we demonstrated synthetic signal injection with a more realistic line shape and calibrated power.more » « less
-
Fulvio Parmigiani (Ed.)Cavity magnonics deals with the interaction of magnons — elementary excitations in magnetic materials — and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration in future quantum technologies. Much of its appeal is derived from the strong magnon–photon coupling and the easily-reached nonlinear regime in microwave cavities. The interaction of magnons with light as detected by Brillouin light scattering is enhanced in magnetic optical resonators, which can be employed to cool and heat magnons. The microwave cavity photon-mediated coupling of a magnon mode to a superconducting qubit enables measurements in the single magnon limit.more » « less
-
Transverse bulk phonons in a multimode integrated quantum acoustic device are excited and characterized via their free-space coupling to a three-dimensional (3D) microwave cavity. These bulk acoustic modes are defined by the geometry of the Y-cut lithium niobate substrate in which they reside and couple to the cavity electric field via a large dipole antenna, with an interaction strength on the order of the cavity linewidth. Using finite element modeling, we determine that the bulk phonons excited by the cavity field have a transverse polarization with a shear velocity matching previously reported values. We demonstrate how the coupling between these transverse acoustic modes and the electric field of the 3D cavity depends on the relative orientation of the device dipole, with a coupling persisting to room temperature. Our study demonstrates the versatility of 3D microwave cavities for mediating contact-less coupling to quantum, and classical, piezoacoustic devices.more » « less
-
Abstract Ultra-small mode volume nanophotonic crystal cavities have been proposed as powerful tools for increasing coupling rates in cavity quantum electrodynamics systems. However, their adoption in quantum information applications remains elusive. In this work, we investigate possible reasons why, and analyze the impact of different low mode volume resonator design choices on their utility in quantum optics experiments. We analyze band structure features and loss rates of low mode volume bowtie cavities in diamond and demonstrate independent design control over cavity-emitter coupling strength and loss rates. Further, using silicon vacancy centers in diamond as exemplary emitters, we investigate the influence of placement imprecision. We find that the benefit on photon collection efficiency and indistinguishability is limited, while the fabrication complexity of ultra-small cavity designs increases substantially compared to conventional photonic crystals. We conclude that ultra-small mode volume designs are primarily of interest for dispersive spin-photon interactions, which are of great interest for future quantum networks.