Rhythmic neural network activity has been broadly linked to behavior. However, it is unclear how membrane potentials of individual neurons track behavioral rhythms, even though many neurons exhibit pace-making properties in isolated brain circuits. To examine whether single-cell voltage rhythmicity is coupled to behavioral rhythms, we focused on delta-frequencies (1–4 Hz) that are known to occur at both the neural network and behavioral levels. We performed membrane voltage imaging of individual striatal neurons simultaneously with network-level local field potential recordings in mice during voluntary movement. We report sustained delta oscillations in the membrane potentials of many striatal neurons, particularly cholinergic interneurons, which organize spikes and network oscillations at beta-frequencies (20–40 Hz) associated with locomotion. Furthermore, the delta-frequency patterned cellular dynamics are coupled to animals’ stepping cycles. Thus, delta-rhythmic cellular dynamics in cholinergic interneurons, known for their autonomous pace-making capabilities, play an important role in regulating network rhythmicity and movement patterning.
Hippocampal network activity at theta frequencies (5-10Hz) is important for behavior. However, it remains unclear how behaviorally-relevant network theta rhythms arise and interact with cellular dynamics to dictate spike timing. We performed membrane voltage (Vm) imaging of individual CA1 pyramidal cells and parvalbumin interneurons with simultaneous local field potential (LFP) recordings in mice during locomotion. We found that Vm theta rhythms organize spike timing in both cell types regardless of behavioral conditions, but the Vm of parvalbumin interneurons is better synchronized with LFP. The temporal relationships between spikes and LFP theta reliably reflect the Vm-LFP relationships in parvalbumin cells, but not in pyramidal cells. Thus, cellular theta rhythms broadly organize spike timing in CA1 neurons, and parvalbumin interneurons are critical in coordinating network theta rhythms.
Cellular membrane voltage of parvalbumin interneurons organizes spiking and network dynamics in the hippocampus.
- Award ID(s):
- 2002971
- PAR ID:
- 10541397
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Deep brain stimulation (DBS) is a promising neuromodulation therapy, but the neurophysiological mechanisms of DBS remain unclear. In awake mice, we performed high-speed membrane voltage fluorescence imaging of individual hippocampal CA1 neurons during DBS delivered at 40 Hz or 140 Hz, free of electrical interference. DBS powerfully depolarized somatic membrane potentials without suppressing spike rate, especially at 140 Hz. Further, DBS paced membrane voltage and spike timing at the stimulation frequency and reduced timed spiking output in response to hippocampal network theta-rhythmic (3–12 Hz) activity patterns. To determine whether DBS directly impacts cellular processing of inputs, we optogenetically evoked theta-rhythmic membrane depolarization at the soma. We found that DBS-evoked membrane depolarization was correlated with DBS-mediated suppression of neuronal responses to optogenetic inputs. These results demonstrate that DBS produces powerful membrane depolarization that interferes with the ability of individual neurons to respond to inputs, creating an informational lesion.more » « less
-
Glucose-stimulated β-cells exhibit synchronized calcium dynamics across the islet that recruit β-cells to enhance insulin secretion. Compared with calcium dynamics, the formation and cell-to-cell propagation of electrical signals within the islet are poorly characterized. To determine factors that influence the propagation of electrical activity across the islet underlying calcium oscillations and β-cell synchronization, we used high-resolution complementary metal-oxide–semiconductor multielectrode arrays (CMOS-MEA) to measure voltage changes associated with the membrane potential of individual cells within intact C57BL6 mouse islets. We measured fast (milliseconds, spikes) and slow (seconds, waves) voltage dynamics. Single spike activity and wave signal velocity were both glucose-dependent, but only spike activity was influenced by N-methyl-d-aspartate receptor activation or inhibition. A repeated glucose stimulus revealed a highly responsive subset of cells in spike activity. When islets were pretreated for 72 h with glucolipotoxic medium, the wave velocity was significantly reduced. Network analysis confirmed that in response to glucolipotoxicity the synchrony of islet cells was affected due to slower propagating electrical waves and not due to altered spike activity. In summary, this approach provided novel insight regarding the propagation of electrical activity and the disruption of cell-to-cell communication due to excessive stimulation.
Article Highlights The high-resolution complementary metal-oxide–semiconductor multielectrode array is suited to track the spatiotemporal propagation of electrical activity through the islet on a cellular scale. A highly responsive subpopulation of islet cells was identified by action potential-like spike activity and proved to be robust to glucolipotoxicity. Electrical waves revealed synchronized electrical activity and their propagation through the islet was slowed down by glucolipotoxicity. The N-methyl-d-aspartate receptor did not influence islet synchronization since modulation of the receptor only affected electrical spikes. The technique is a useful tool for exploring the pancreatic islet network in health and disease.
-
Abstract Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.
-
Gamma oscillations are thought to coordinate the spike timing of functionally specialized neuronal ensembles across brain regions. To test this hypothesis, we optogenetically perturbed gamma spike timing in the rat medial (MEC) and lateral (LEC) entorhinal cortices and found impairments in spatial and object learning tasks, respectively. MEC and LEC were synchronized with the hippocampal dentate gyrus through high- and low-gamma-frequency rhythms, respectively, and engaged either granule cells or mossy cells and CA3 pyramidal cells in a task-dependent manner. Gamma perturbation disrupted the learning-induced assembly organization of target neurons. Our findings imply that pathway-specific gamma oscillations route task-relevant information between distinct neuronal subpopulations in the entorhinal-hippocampal circuit. We hypothesize that interregional gamma-time-scale spike coordination is a mechanism of neuronal communication.