Abstract π-Conjugated macrocycles behave differently from analogous linear chains because their electronic wavefunctions resemble a quantum particle on a ring, leading to aromaticity or anti-aromaticity. [18]Annulene, (CH)18, is the archetypal non-benzenoid aromatic hydrocarbon. Molecules with circuits of 4n + 2 π electrons, such as [18]annulene (n = 4), are aromatic, with enhanced stability and diatropic ring currents (magnetic shielding inside the ring), whereas those with 4nπ electrons, such as the dianion of [18]annulene, are expected to be anti-aromatic and exhibit the opposite behaviour. Here we use1H NMR spectroscopy to re-evaluate the structure of the [18]annulene dianion. We also show that it can be reduced further to an aromatic tetraanion, which has the same shape as the dianion. The crystal structure of the tetraanion lithium salt confirms its geometry and reveals a metallocene-like sandwich, with five Li+cations intercalated between two [18]annulene tetraanions. We also report a heteroleptic sandwich, with [18]annulene and corannulene tetraanion decks.
more »
« less
Globally Aromatic Odd-Electron pi-Magnetic Macrocycle
Molecular π-magnets based on single organic molecules have attracted increasing attention for their potential applications in optoelectronics and spintronics. Global aromaticity in conjugated macrocyclic polyradicaloids is still an open question that has only been tackled in molecules with an even number of electrons. Here, we report the on-surface synthesis of a cyclopenta-ringfused oligo(m-phenylene) macrocycle, 9MC, with an odd number of electrons. The generated polyradicaloid undergoes a surface-induced distortion to a D3h symmetry with a fully delocalized doublet ground state. Interestingly, 9MC exhibits two aromatic annulene-within-an-annulene (AWA) ring currents in the inner and outer rings.
more »
« less
- Award ID(s):
- 2107923
- PAR ID:
- 10541628
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Chem
- ISSN:
- 2451-9294
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Towards a density functional theory of molecular fragments. What is the shape of atoms in molecules?In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in moleculesmore » « less
-
Abstract The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.more » « less
-
Solvent molecules influence the reactions of molecular hydrogen and oxygen on palladium nanoparticles. Organic solvents activate to form reactive surface intermediates that mediate oxygen reduction through pathways distinct from reactions in pure water. Kinetic measurements and ab initio quantum chemical calculations indicate that methanol and water cocatalyze oxygen reduction by facilitating proton-electron transfer reactions. Methanol generates hydroxymethyl intermediates on palladium surfaces that efficiently transfer protons and electrons to oxygen to form hydrogen peroxide and formaldehyde. Formaldehyde subsequently oxidizes hydrogen to regenerate hydroxymethyl. Water, on the other hand, heterolytically oxidizes hydrogen to produce hydronium ions and electrons that reduce oxygen. These findings suggest that reactions of solvent molecules at solid-liquid interfaces can generate redox mediators in situ and provide opportunities to substantially increase rates and selectivities for catalytic reactions.more » « less
-
Bond order quantifies the number of electrons dressed-exchanged between two atoms in a material and is important for understanding many chemical properties. Diatomic molecules are the smallest molecules possessing chemical bonds and play key roles in atmospheric chemistry, biochemistry, lab chemistry, and chemical manufacturing. Here we quantum-mechanically calculate bond orders for 288 diatomic molecules and ions. For homodiatomics, we show bond orders correlate to bond energies for elements within the same chemical group. We quantify and discuss how semicore electrons weaken bond orders for elements having diffuse semicore electrons. Lots of chemistry is effected by this. We introduce a first-principles method to represent orbital-independent bond order as a sum of orbital-dependent bond order components. This bond order component analysis (BOCA) applies to any spin-orbitals that are unitary transformations of the natural spin-orbitals, with or without periodic boundary conditions, and to non-magnetic and (collinear or non-collinear) magnetic materials. We use this BOCA to study all period 2 homodiatomics plus Mo 2 , Cr 2 , ClO, ClO − , and Mo 2 (acetate) 4 . Using Manz's bond order equation with DDEC6 partitioning, the Mo–Mo bond order was 4.12 in Mo 2 and 1.46 in Mo 2 (acetate) 4 with a sum of bond orders for each Mo atom of ∼4. Our study informs both chemistry research and education. As a learning aid, we introduce an analogy between bond orders in materials and message transmission in computer networks. We also introduce the first working quantitative heuristic model for all period 2 homodiatomic bond orders. This heuristic model incorporates s–p mixing to give heuristic bond orders of ¾ (Be 2 ), 1¾ (B 2 ), 2¾ (C 2 ), and whole number bond orders for the remaining period 2 homodiatomics.more » « less
An official website of the United States government

