skip to main content


Title: Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene‐within‐an‐Annulene Models
Abstract

The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.

 
more » « less
Award ID(s):
2003411 1608628
NSF-PAR ID:
10364322
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
6
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.

     
    more » « less
  2. Abstract

    A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α‐linked thiophene‐3‐ester and furan‐3‐ester repeat units, and was prepared in a single step using Suzuki–Miyaura cross‐coupling of a 2‐(thiophen‐2‐yl)furan monomer. The ester side groups help promote asynconformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5resulted in formation of the [C4TE4FE]2+dication. Computational work, paired with1H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2eoxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from1H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan‐based macrocycles to tune electronic properties.

     
    more » « less
  3. Abstract

    M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell ofM= 1.80 ± 0.54 × 108Mand [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108Mfor the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM⋆,prog≃ 5 × 108M. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.

     
    more » « less
  4. Abstract

    Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.

     
    more » « less
  5. Abstract

    Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.

     
    more » « less