Abstract We introduce an efficient stochastic interacting particle-field (SIPF) algorithm with no history dependence for computing aggregation patterns and near singular solutions of parabolic-parabolic Keller-Segel (KS) chemotaxis system in three-dimensional (3D) space. In our algorithm, the KS solutions are approximated as empirical measures of particles coupled with a smoother field (concentration of chemo-attractant) variable computed by a spectral method. Instead of using heat kernels that cause history dependence and high memory cost, we leverage the implicit Euler discretization to derive a one-step recursion in time for stochastic particle positions and the field variable based on the explicit Green’s function of an elliptic operator of the form Laplacian minus a positive constant. In numerical experiments, we observe that the resulting SIPF algorithm is convergent and self-adaptive to the high-gradient part of solutions. Despite the lack of analytical knowledge (such as a self-similar ansatz) of a blowup, the SIPF algorithm provides a low-cost approach to studying the emergence of finite-time blowup in 3D space using only dozens of Fourier modes and by varying the amount of initial mass and tracking the evolution of the field variable. Notably, the algorithm can handle multi-modal initial data and the subsequent complex evolution involving the merging of particle clusters and the formation of a finite time singularity with ease.
more »
« less
An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation
We establish both the uniqueness and the existence of the solutions to a hidden-memory variable-order fractional stochastic partial differential equation, which models, e.g., the stochastic motion of a Brownian particle within a viscous liquid medium varied with fractal dimensions. We also investigate the inverse problem concerning the observations of the solutions, which eliminates the analytic assumptions on the variable orders in the literature of this topic and theoretically guarantees the reliability of the determination and experimental inference.
more »
« less
- Award ID(s):
- 2012291
- PAR ID:
- 10541629
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Fractal and Fractional
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2504-3110
- Page Range / eLocation ID:
- 850
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We will present exact solutions for three variations of the stochastic Korteweg de Vries–Burgers (KdV–Burgers) equation featuring variable coefficients. In each variant, white noise exhibits spatial uniformity, and the three categories include additive, multiplicative, and advection noise. Across all cases, the coefficients are timedependent functions. Our discovery indicates that solving certain deterministic counterparts of KdV–Burgers equations and composing the solution with a solution of stochastic differential equations leads to the exact solution of the stochastic Korteweg de Vries–Burgers (KdV–Burgers) equations.more » « less
-
Adaptivity in Stochastic Submodular Cover Solutions to stochastic optimization problems are typically sequential decision processes that make decisions one by one, waiting for (and using) the feedback from each decision. Whereas such “adaptive” solutions achieve the best objective, they can be very time-consuming because of the need to wait for feedback after each decision. A natural question is are there solutions that only adapt (i.e., wait for feedback) a few times whereas still being competitive with the fully adaptive optimal solution? In “The Power of Adaptivity for Stochastic Submodular Cover,” Ghuge, Gupta, and Nagarajan resolve this question in the context of stochastic submodular cover, which is a fundamental stochastic covering problem. They provide algorithms that achieve a smooth trade-off between the number of adaptive “rounds” and the solution quality. The authors also demonstrate via experiments on real-world and synthetic data sets that, even for problems with more than 1,000 decisions, about six rounds of adaptivity suffice to obtain solutions nearly as good as fully adaptive solutions.more » « less
-
Abstract We study the focusing stochastic nonlinear Schrödinger equation in 1D in the $L^2$-critical and supercritical cases with an additive or multiplicative perturbation driven by space-time white noise. Unlike the deterministic case, the Hamiltonian (or energy) is not conserved in the stochastic setting nor is the mass (or the $L^2$-norm) conserved in the additive case. Therefore, we investigate the time evolution of these quantities. After that, we study the influence of noise on the global behaviour of solutions. In particular, we show that the noise may induce blow up, thus ceasing the global existence of the solution, which otherwise would be global in the deterministic setting. Furthermore, we study the effect of the noise on the blow-up dynamics in both multiplicative and additive noise settings and obtain profiles and rates of the blow-up solutions. Our findings conclude that the blow-up parameters (rate and profile) are insensitive to the type or strength of the noise: if blow up happens, it has the same dynamics as in the deterministic setting; however, there is a (random) shift of the blow-up centre, which can be described as a random variable normally distributed.more » « less
-
null (Ed.)Abstract Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.more » « less
An official website of the United States government

