- Award ID(s):
- 2000638
- PAR ID:
- 10541656
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of Educational Data Mining
- ISSN:
- 2157-2100
- Subject(s) / Keyword(s):
- student privacy data sharing machine learning
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
Anonymization of event logs facilitates process mining while protecting sensitive information of process stakeholders. Existing techniques, however, focus on the privatization of the control-flow. Other process perspectives, such as roles, resources, and objects are neglected or subject to randomization, which breaks the dependencies between the perspectives. Hence, existing techniques are not suited for advanced process mining tasks, e.g., social network mining or predictive monitoring . To address this gap, we propose PMDG, a framework to ensure privacy for multi-perspective process mining through data generalization. It provides group-based privacy guarantees for an event log, while preserving the characteristic dependencies between the control-flow and further process perspectives. Unlike existing privatization techniques that rely on data suppression or noise insertion, PMDG adopts data generalization: a technique where the activities and attribute values referenced in events are generalized into more abstract ones, to obtain equivalence classes that are sufficiently large from a privacy point of view. We demonstrate empirically that PMDG outperforms state-of-the-art anonymization techniques, when mining handovers and predicting outcomes.more » « less
-
Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. However, analyzing process data is challenging since the specific format of process data varies a lot depending on different learning/testing scenarios. In this paper, we propose a framework for learning representations of educational process data that is applicable across many different learning scenarios. Our framework consists of a pre-training step that uses BERT-type objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation’s report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.1more » « less
-
Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. In this paper, we propose a framework for learning representations of educational process data that is applicable across different learning scenarios. Our framework consists of a pre-training step that uses BERTtype objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation’s report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.more » « less
-
Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. In this paper, we propose a framework for learning representations of educational process data that is applicable across different learning scenarios. Our framework consists of a pre-training step that uses BERTtype objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation’s report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.more » « less
-
Abstract While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a general framework for leveraging complementary information across different models and datasets for accurate prediction of data-scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to any downstream property prediction task. We anticipate the performance of our framework will further improve as better model architectures, new pre-training tasks, and larger materials datasets are developed by the community.