Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum.
more »
« less
Different aspects of failing to recover from proactive semantic interference predicts rate of progression from amnestic mild cognitive impairment to dementia
IntroductionThis study investigated the role of proactive semantic interference (frPSI) in predicting the progression of amnestic Mild Cognitive Impairment (aMCI) to dementia, taking into account various cognitive and biological factors. MethodsThe research involved 89 older adults with aMCI who underwent baseline assessments, including amyloid PET and MRI scans, and were followed longitudinally over a period ranging from 12 to 55 months (average 26.05 months). ResultsThe findings revealed that more than 30% of the participants diagnosed with aMCI progressed to dementia during the observation period. Using Cox Proportional Hazards modeling and adjusting for demographic factors, global cognitive function, hippocampal volume, and amyloid positivity, two distinct aspects of frPSI were identified as significant predictors of a faster decline to dementia. These aspects were fewer correct responses on a frPSI trial and a higher number of semantic intrusion errors on the same trial, with 29.5% and 31.6 % increases in the likelihood of more rapid progression to dementia, respectively. DiscussionThese findings after adjustment for demographic and biological markers of Alzheimer’s Disease, suggest that assessing frPSI may offer valuable insights into the risk of dementia progression in individuals with aMCI.
more »
« less
- Award ID(s):
- 1920182
- PAR ID:
- 10541672
- Publisher / Repository:
- PubMed
- Date Published:
- Journal Name:
- Frontiers in Aging Neuroscience
- Volume:
- 16
- ISSN:
- 1663-4365
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundSemantic intrusion errors (SIEs) are associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). It is unknown whether accounting for maximum learning capacity still leads to an increase in SIEs when elevated plasma p-tau217, a biological indicator of underlying AD, is present. MethodsOne hundred fifty-eight older adult participants completed the Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L), a sensitive cognitive challenge test designed to elicit SIEs. Of these, 108 were clinically diagnosed with amnestic MCI (aMCI). Fifty-eight individuals met or exceeded a plasma p-tau217positivity of >0.55 pg/ml, while 50 individuals scored below this threshold. ResultsAfter adjusting for demographic covariates and maximum learning capacity, the aMCI p-tau217+ group evidenced more SIEs compared to aMCI p-tau217- on the first (list B1;p= 0.035) and second trials of the competing list (list B2;p= 0.006). Biological predictors such asApoEε4 status, higher p-tau217, and older age were predictors of an elevated number of SIEs [list B2:F(3,104) = 10.92;p= 0.001;R= 0.489)]. ConclusionsUnlike previous studies that used amyloid PET or other plasma biomarkers, individuals with aMCI p-tau217+ evidenced more SIEs, even after adjusting for their initial learning capacity, a covariate that has not been studied previously. These findings support that SIEs are more prevalent in the presence of underlying AD pathology and occur independent of learning deficits.more » « less
-
Abstract IntroductionAutomated computational assessment of neuropsychological tests would enable widespread, cost‐effective screening for dementia. MethodsA novel natural language processing approach is developed and validated to identify different stages of dementia based on automated transcription of digital voice recordings of subjects’ neuropsychological tests conducted by the Framingham Heart Study (n= 1084). Transcribed sentences from the test were encoded into quantitative data and several models were trained and tested using these data and the participants’ demographic characteristics. ResultsAverage area under the curve (AUC) on the held‐out test data reached 92.6%, 88.0%, and 74.4% for differentiating Normal cognition from Dementia, Normal or Mild Cognitive Impairment (MCI) from Dementia, and Normal from MCI, respectively. DiscussionThe proposed approach offers a fully automated identification of MCI and dementia based on a recorded neuropsychological test, providing an opportunity to develop a remote screening tool that could be adapted easily to any language.more » « less
-
Abstract INTRODUCTIONOlder adults represent the fastest growing segment of the homeless community. Little is known about the prevalence of dementia and mild cognitive impairment (MCI) in this population. METHODSDementia and MCI screening using the Montreal Cognitive Assessment (MoCA) was incorporated into the standard senior evaluation for adult clients aged ≥ 55 in a large emergency homeless shelter. RESULTSIn a 6‐week period, 104 of 112 (92.9%) assessments were positive for dementia or MCI using a standard cutoff of 26, and 81 (72.3%) were positive using a conservative cutoff of 23. There was no significant difference in MoCA scores based on sex or education level, and no significant correlation between age and MoCA score. DISCUSSIONOlder adults experiencing homelessness may have a high likelihood of dementia or MCI. Routine MoCA screening in older adults experiencing homelessness is feasible and can help to identify services needed to successfully exit homelessness.more » « less
-
Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries.more » « less
An official website of the United States government

