skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning optimization for small object classification in lensfree holographic microscopy
Lensfree holographic microscopy is a compact and cost-effective modality for imaging large fields of view with high resolution. When combined with automated image processing, it can be used for biomolecular sensing where biochemically functionalized micro- and nano-beads are used to label biomolecules of interest. Neural networks for image feature classification provide faster and more robust sensing results than traditional image processing approaches. While neural networks have been widely applied to other types of image classification problems, and even image reconstruction in lensfree holographic microscopy, it is unclear what type of network architecture performs best for the types of small object image classification problems involved in holographic-based sensors. Here, we apply a shallow convolutional neural network to this task, and thoroughly investigate how different layers and hyperparameters affect network performance. Layers include dropout, convolutional, normalization, pooling, and activation. Hyperparameters include dropout fraction, filter number and size, stride, and padding. We ultimately achieve a network accuracy of ∼83%, and find that the choice of activation layer is most important for maximizing accuracy. We hope that these results can be helpful for researchers developing neural networks for similar classification tasks.  more » « less
Award ID(s):
2114275
PAR ID:
10541701
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
20
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 35062
Size(s):
Article No. 35062
Sponsoring Org:
National Science Foundation
More Like this
  1. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recent advances in data fusion provide the capability to obtain enhanced hyperspectral data with high spatial and spectral information content, thus allowing for an improved classification accuracy. Although hyperspectral image classification is a highly investigated topic in remote sensing, each classification technique presents different advantages and disadvantages. For example; methods based on morphological filtering are particularly good at classifying human-made structures with basic geometrical spatial shape, like houses and buildings. On the other hand, methods based on spectral information tend to perform better classification in natural scenery with more shape diversity such as vegetation and soil areas. Even more, for those classes with mixed pixels, small training data or objects with similar re ectance values present a higher challenge to obtain high classification accuracy. Therefore, it is difficult to find just one technique that provides the highest accuracy of classification for every class present in an image. This work proposes a decision fusion approach aiming to increase classification accuracy of enhanced hyperspectral images by integrating the results of multiple classifiers. Our approach is performed in two-steps: 1) the use of machine learning algorithms such as Support Vector Machines (SVM), Deep Neural Networks (DNN) and Class-dependent Sparse Representation will generate initial classification data, then 2) the decision fusion scheme based on a Convolutional Neural Network (CNN) will integrate all the classification results into a unified classification rule. In particular, the CNN receives as input the different probabilities of pixel values from each implemented classifier, and using a softmax activation function, the final decision is estimated. We present results showing the performance of our method using different hyperspectral image datasets. 
    more » « less
  2. Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP). They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation. Most state-of-the-art neural networks are over-parameterized and require a high computational cost. One straightforward solution is to replace the layers of the networks with their low-rank tensor approximations using different tensor decomposition methods. This article reviews six tensor decomposition methods and illustrates their ability to compress model parameters of convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers. The accuracy of some compressed models can be higher than the original versions. Evaluations indicate that tensor decompositions can achieve significant reductions in model size, run-time and energy consumption, and are well suited for implementing neural networks on edge devices. 
    more » « less
  3. Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration. They are capable of solving standard inverse problems such as denois- ing and compressive sensing with excellent results by simply fitting a neural network model to measurements from a single image or signal without the need for any additional training data. For some applications, this critically requires additional regularization in the form of early stopping the optimization. For signal recovery from a few measurements, however, un-trained convolutional networks have an intriguing self-regularizing property: Even though the network can perfectly fit any image, the network recovers a natural image from few measurements when trained with gradient descent until convergence. In this paper, we provide numerical evidence for this property and study it theoretically. We show that—without any further regularization—an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements 
    more » « less
  4. Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration. They are capable of solving standard inverse problems such as denoising and compressive sensing with excellent results by simply fitting a neural network model to measurements from a single image or signal without the need for any additional training data. For some applications, this critically requires additional regularization in the form of early stopping the optimization. For signal recovery from a few measurements, however, un-trained convolutional networks have an intriguing self-regularizing property: Even though the network can perfectly fit any image, the network recovers a natural image from few measurements when trained with gradient descent until convergence. In this paper, we provide numerical evidence for this property and study it theoretically. We show that---without any further regularization---an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements. 
    more » « less
  5. Abstract We assess whether a supervised machine learning algorithm, specifically a convolutional neural network (CNN), achieves higher accuracy on planktonic image classification when including non‐plankton and ancillary plankton during the training procedure. We focus on the case of optimizing the CNN for a single planktonic image source, while considering ancillary images to be plankton images from other instruments. We conducted two sets of experiments with three different types of plankton images (from aZooglider, Underwater Vision Profiler 5, and Zooscan), and our results held across all three image types. First, we considered whether single‐stage transfer learning using non‐plankton images was beneficial. For this assessment, we used ImageNet images and the 2015 ImageNet contest‐winning model, ResNet‐152. We found increased accuracy using a ResNet‐152 model pretrained on ImageNet, provided the entire network was retrained rather than retraining only the fully connected layers. Next, we combined all three plankton image types into a single dataset with 3.3 million images (despite their differences in contrast, resolution, and pixel pitch) and conducted a multistage transfer learning assessment. We executed a transfer learning stage from ImageNet to the merged ancillary plankton dataset, then a second transfer learning stage from that merged plankton model to a single instrument dataset. We found that multistage transfer learning resulted in additional accuracy gains. These results should have generality for other image classification tasks. 
    more » « less