skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tensor Decomposition for Model Reduction in Neural Networks: A Review
Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP). They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation. Most state-of-the-art neural networks are over-parameterized and require a high computational cost. One straightforward solution is to replace the layers of the networks with their low-rank tensor approximations using different tensor decomposition methods. This article reviews six tensor decomposition methods and illustrates their ability to compress model parameters of convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers. The accuracy of some compressed models can be higher than the original versions. Evaluations indicate that tensor decompositions can achieve significant reductions in model size, run-time and energy consumption, and are well suited for implementing neural networks on edge devices.  more » « less
Award ID(s):
1954749
PAR ID:
10434926
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE circuits and systems magazine
Volume:
23
Issue:
2
ISSN:
1531-636X
Page Range / eLocation ID:
8-28
Subject(s) / Keyword(s):
Tensor decomposition , convolution neural network acceleration , recurrent neural network acceleration , transformer acceleration , canonical polyadic decomposition , Tucker decomposition , tensor train decomposition , tensor ring decomposition , block-term decomposition , hierarchical Tucker decomposition , model compression
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selecting suitable architecture parameters and training hyperparameters is essential for enhancing machine learning (ML) model performance. Several recent empirical studies conduct large-scale correlational analysis on neural networks (NNs) to search for effective generalization metrics that can guide this type of model selection. Effective metrics are typically expected to correlate strongly with test performance. In this paper, we expand on prior analyses by examining generalization-metric-based model selection with the following objectives: (i) focusing on natural language processing (NLP) tasks, as prior work primarily concentrates on computer vision (CV) tasks; (ii) considering metrics that directly predict test error instead of the generalization gap; (iii) exploring metrics that do not need access to data to compute. From these objectives, we are able to provide the first model selection results on large pretrained Transformers from Huggingface using generalization metrics. Our analyses consider (I) hundreds of Transformers trained in different settings, in which we systematically vary the amount of data, the model size and the optimization hyperparameters, (II) a total of 51 pretrained Transformers from eight families of Huggingface NLP models, including GPT2, BERT, etc., and (III) a total of 28 existing and novel generalization metrics. Despite their niche status, we find that metrics derived from the heavy-tail (HT) perspective are particularly useful in NLP tasks, exhibiting stronger correlations than other, more popular metrics. To further examine these metrics, we extend prior formulations relying on power law (PL) spectral distributions to exponential (EXP) and exponentially-truncated power law (E-TPL) families. 
    more » « less
  2. Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain, aiming to develop graph models trained on extensive and diverse data to enhance their applicability across various tasks and domains. Developing GFMs presents unique challenges over traditional Graph Neural Networks (GNNs), which are typically trained from scratch for specific tasks on particular datasets. The primary challenge in constructing GFMs lies in effectively leveraging vast and diverse graph data to achieve positive transfer. Drawing inspiration from existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a ``graph vocabulary'', in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, expressiveness, and stability. Such a vocabulary perspective can potentially advance the future GFM design in line with the neural scaling laws. All relevant resources with GFM design can be found here. 
    more » « less
  3. A major challenge in many machine learning tasks is that the model expressive power depends on model size. Low-rank tensor methods are an efficient tool for handling the curse of dimensionality in many large-scale machine learning models. The major challenges in training a tensor learning model include how to process the high-volume data, how to determine the tensor rank automatically, and how to estimate the uncertainty of the results. While existing tensor learning focuses on a specific task, this paper proposes a generic Bayesian framework that can be employed to solve a broad class of tensor learning problems such as tensor completion, tensor regression, and tensorized neural networks. We develop a low-rank tensor prior for automatic rank determination in nonlinear problems. Our method is implemented with both stochastic gradient Hamiltonian Monte Carlo (SGHMC) and Stein Variational Gradient Descent (SVGD). We compare the automatic rank determination and uncertainty quantification of these two solvers. We demonstrate that our proposed method can determine the tensor rank automatically and can quantify the uncertainty of the obtained results. We validate our framework on tensor completion tasks and tensorized neural network training tasks. 
    more » « less
  4. It has become standard to solve NLP tasks by fine-tuning pre-trained language models (LMs), especially in low-data settings. There is minimal theoretical understanding of empirical success, e.g., why fine-tuning a model with $10^8$ or more parameters on a couple dozen training points does not result in overfitting. We investigate whether the Neural Tangent Kernel (NTK)—which originated as a model to study the gradient descent dynamics of infinitely wide networks with suitable random initialization—describes fine-tuning of pre-trained LMs. This study was inspired by the decent performance of NTK for computer vision tasks (Wei et al., 2022). We extend the NTK formalism to Adam and use Tensor Programs (Yang, 2020) to characterize conditions under which the NTK lens may describe fine-tuning updates to pre-trained language models. Extensive experiments on 14 NLP tasks validate our theory and show that formulating the downstream task as a masked word prediction problem through prompting often induces kernel-based dynamics during fine-tuning. Finally, we use this kernel view to propose an explanation for the success of parameter-efficient subspace-based fine-tuning methods. 
    more » « less
  5. Tensor decomposition is an effective approach to compress over-parameterized neural networks and to enable their deployment on resource-constrained hardware platforms. However, directly applying tensor compression in the training process is a challenging task due to the difficulty of choosing a proper tensor rank. In order to address this challenge, this paper proposes a low-rank Bayesian tensorized neural network. Our Bayesian method performs automatic model compression via an adaptive tensor rank determination. We also present approaches for posterior density calculation and maximum a posteriori (MAP) estimation for the end-to-end training of our tensorized neural network. We provide experimental validation on a two-layer fully connected neural network, a 6-layer CNN and a 110-layer residual neural network where our work produces 7.4X to 137X more compact neural networks directly from the training while achieving high prediction accuracy. 
    more » « less