skip to main content

This content will become publicly available on July 21, 2024

Title: Tensor Decomposition for Model Reduction in Neural Networks: A Review
Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP). They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation. Most state-of-the-art neural networks are over-parameterized and require a high computational cost. One straightforward solution is to replace the layers of the networks with their low-rank tensor approximations using different tensor decomposition methods. This article reviews six tensor decomposition methods and illustrates their ability to compress model parameters of convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers. The accuracy of some compressed models can be higher than the original versions. Evaluations indicate that tensor decompositions can achieve significant reductions in model size, run-time and energy consumption, and are well suited for implementing neural networks on edge devices.  more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
IEEE circuits and systems magazine
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["Tensor decomposition",",\n convolution neural network acceleration",",\n recurrent neural network acceleration",",\n transformer acceleration",",\n canonical polyadic decomposition",",\n Tucker decomposition",",\n tensor train decomposition",",\n tensor ring decomposition",",\n block-term decomposition",",\n hierarchical Tucker decomposition",",\n model compression"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has become standard to solve NLP tasks by fine-tuning pre-trained language models (LMs), especially in low-data settings. There is minimal theoretical understanding of empirical success, e.g., why fine-tuning a model with $10^8$ or more parameters on a couple dozen training points does not result in overfitting. We investigate whether the Neural Tangent Kernel (NTK)—which originated as a model to study the gradient descent dynamics of infinitely wide networks with suitable random initialization—describes fine-tuning of pre-trained LMs. This study was inspired by the decent performance of NTK for computer vision tasks (Wei et al., 2022). We extend the NTK formalism to Adam and use Tensor Programs (Yang, 2020) to characterize conditions under which the NTK lens may describe fine-tuning updates to pre-trained language models. Extensive experiments on 14 NLP tasks validate our theory and show that formulating the downstream task as a masked word prediction problem through prompting often induces kernel-based dynamics during fine-tuning. Finally, we use this kernel view to propose an explanation for the success of parameter-efficient subspace-based fine-tuning methods. 
    more » « less
  2. Unsupervised text encoding models have recently fueled substantial progress in NLP. The key idea is to use neural networks to convert words in texts to vector space representations based on word positions in a sentence and their contexts, which are suitable for end-to-end training of downstream tasks. We see a strikingly similar situation in spatial analysis, which focuses on incorporating both absolute positions and spatial contexts of geographic objects such as POIs into models. A general-purpose representation model for space is valuable for a multitude of tasks. However, no such general model exists to date beyond simply applying discretization or feed-forward nets to coordinates, and little effort has been put into jointly modeling distributions with vastly different characteristics, which commonly emerges from GIS data. Meanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in mammals provide a multi-scale periodic representation that functions as a metric for location encoding and is critical for recognizing places and for path-integration. Therefore, we propose a representation learning model called Space2Vec to encode the absolute positions and spatial relationships of places. We conduct experiments on two real-world geographic data for two different tasks: 1) predicting types of POIs given their positions and context, 2) image classification leveraging their geo-locations. Results show that because of its multi-scale representations, Space2Vec outperforms well-established ML approaches such as RBF kernels, multi-layer feed-forward nets, and tile embedding approaches for location modeling and image classification tasks. Detailed analysis shows that all baselines can at most well handle distribution at one scale but show poor performances in other scales. In contrast, Space2Vec's multi-scale representation can handle distributions at different scales. 
    more » « less
  3. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging. 
    more » « less
  4. A major challenge in many machine learning tasks is that the model expressive power depends on model size. Low-rank tensor methods are an efficient tool for handling the curse of dimensionality in many large-scale machine learning models. The major challenges in training a tensor learning model include how to process the high-volume data, how to determine the tensor rank automatically, and how to estimate the uncertainty of the results. While existing tensor learning focuses on a specific task, this paper proposes a generic Bayesian framework that can be employed to solve a broad class of tensor learning problems such as tensor completion, tensor regression, and tensorized neural networks. We develop a low-rank tensor prior for automatic rank determination in nonlinear problems. Our method is implemented with both stochastic gradient Hamiltonian Monte Carlo (SGHMC) and Stein Variational Gradient Descent (SVGD). We compare the automatic rank determination and uncertainty quantification of these two solvers. We demonstrate that our proposed method can determine the tensor rank automatically and can quantify the uncertainty of the obtained results. We validate our framework on tensor completion tasks and tensorized neural network training tasks. 
    more » « less
  5. The remarkable success of the Transformer model in Natural Language Processing (NLP) is increasingly capturing the attention of vision researchers in contemporary times. The Vision Transformer (ViT) model effectively models long-range dependencies while utilizing a self-attention mechanism by converting image information into meaningful representations. Moreover, the parallelism property of ViT ensures better scalability and model generalization compared to Recurrent Neural Networks (RNN). However, developing robust ViT models for high-risk vision applications, such as self-driving cars, is critical. Deterministic ViT models are susceptible to noise and adversarial attacks and incapable of yielding a level of confidence in output predictions. Quantifying the confidence (or uncertainty) level in the decision is highly important in such real-world applications. In this work, we introduce a probabilistic framework for ViT to quantify the level of uncertainty in the model's decision. We approximate the posterior distribution of network parameters using variational inference. While progressing through non-linear layers, the first-order Taylor approximation was deployed. The developed framework propagates the mean and covariance of the posterior distribution through layers of the probabilistic ViT model and quantifies uncertainty at the output predictions. Quantifying uncertainty aids in providing warning signals to real-world applications in case of noisy situations. Experimental results from extensive simulation conducted on numerous benchmark datasets (e.g., MNIST and Fashion-MNIST) for image classification tasks exhibit 1) higher accuracy of proposed probabilistic ViT under noise or adversarial attacks compared to the deterministic ViT. 2) Self-evaluation through uncertainty becomes notably pronounced as noise levels escalate. Simulations were conducted at the Texas Advanced Computing Center (TACC) on the Lonestar6 supercomputer node. With the help of this vital resource, we completed all the experiments within a reasonable period. 
    more » « less