skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Early galaxies and early dark energy: a unified solution to the hubble tension and puzzles of massive bright galaxies revealed by JWST
ABSTRACT

JWST has revealed a large population of UV-bright galaxies at $z\gtrsim 10$ and possibly overly massive galaxies at $z\gtrsim 7$, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at $4\lesssim z \lesssim 10$ in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at $z\simeq 12$ based on spectroscopically confirmed galaxies (eight galaxies at $z\simeq 11\!-\!13.5$) exhibit no tension with the benchmark model. Photometric constraints at $12 \lesssim z\lesssim 16$ can be fully explained within EDE via either moderately increased star-formation efficiencies ($\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent}$ at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) or enhanced UV variabilities ($\sigma _{\rm UV}\sim 0.8\!-\!1.3$ mag at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in $\Lambda$CDM, especially at $z\gtrsim 14$, where the required $\sigma _{\rm UV}$ exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics.

 
more » « less
Award ID(s):
2108962 1910346 1752913
PAR ID:
10541753
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
533
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3923-3936
Size(s):
p. 3923-3936
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We investigate galaxy sizes at redshift $z\gtrsim 6$ with the cosmological radiation-magnetohydrodynamic simulation suite thesan(-hr). These simulations simultaneously capture reionization of the large-scale intergalactic medium and resolved galaxy properties. The intrinsic sizes ($r^{\ast }_{1/2}$) of simulated galaxies increase moderately with stellar mass at $M_{\ast } \lesssim 10^{8}{\, \rm M_\odot}$ and decrease fast at larger masses, resulting in a hump feature at $M_{\ast }\sim 10^{8}{\, \rm M_\odot}$ that is insensitive to redshift. Low-mass galaxies are in the initial phase of size growth and are better described by a spherical shell model with feedback-driven outflows competing with the cold inflowing gas streams. In contrast, massive galaxies fit better with the disc formation model. They generally experience a phase of rapid compaction and gas depletion, likely driven by internal disc instability rather than external processes. We identify four compact quenched galaxies in the $(95.5\, {\rm cMpc})^{3}$ volume of thesan-1 at $z\simeq 6$ and their quenching follows reaching a characteristic stellar surface density akin to the massive compact galaxies at cosmic noon. Compared to observations, we find that the median ultraviolet effective radius ($R^{\rm UV}_{\rm eff}$) of simulated galaxies is at least three times larger than the observed ones at $M_{\ast }\lesssim 10^{9}{\, \rm M_\odot}$ or $M_{\rm UV}\gtrsim -20$ at $6 \lesssim z \lesssim 10$. The population of compact galaxies ($R^{\rm UV}_{\rm eff}\lesssim 300\, {\rm pc}$) galaxies at $M_{\ast }\sim 10^{8}{\, \rm M_\odot}$ is missing in our simulations. This inconsistency persists across many other cosmological simulations with different galaxy formation models and demonstrates the potential of using galaxy morphology to constrain physics of galaxy formation at high redshifts.

     
    more » « less
  2. ABSTRACT

    The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $z \gtrsim 6$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $z=6\!-\!9$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $M_{\rm star}\sim 10^5\, \rm {M_\odot }$ ($\sim 10^9\, \rm {M_\odot }$) had $\approx 1$ ($\approx 30$) progenitors at $z\approx 7$, and its main progenitor comprised $\approx 100~{{\ \rm per\ cent}}$ ($\approx 10~{{\ \rm per\ cent}}$) of the total stellar mass of all its progenitors at $z\approx 7$. We show that although only $\sim 15~{{\ \rm per\ cent}}$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $z \sim 6 \!-\! 9$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$ at $z \gtrsim 6$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies.

     
    more » « less
  3. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
  4. ABSTRACT

    JWST observations have revealed a population of galaxies bright enough that potentially challenge standard galaxy formation models in the Λ cold dark matter (ΛCDM) cosmology. Using a minimal empirical framework, we investigate the influence of variability on the rest-frame ultra-violet (UV) luminosity function of galaxies at z ≥ 9. Our study differentiates between the median UV radiation yield and the variability of UV luminosities of galaxies at a fixed dark matter halo mass. We primarily focus on the latter effect, which depends on halo assembly and galaxy formation processes and can significantly increase the abundance of UV-bright galaxies due to the upscatter of galaxies in lower-mass haloes. We find that a relatively low level of variability, σUV ≈ 0.75 mag, matches the observational constraints at z ≈ 9. However, increasingly larger σUV is necessary when moving to higher redshifts, reaching $\sigma _{\rm UV} \approx 2.0\, (2.5)\, {\rm mag}$ at z ≈ 12 (16). This implied variability is consistent with expectations of physical processes in high-redshift galaxies such as bursty star formation and dust clearance during strong feedback cycles. Photometric constraints from JWST at z ≳ 9 therefore can be reconciled with a standard ΛCDM-based galaxy formation model calibrated at lower redshifts without the need for adjustments to the median UV radiation yield.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$ and $M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. 
    more » « less