A novel sensing approach for the single radio frequency (RF) chain millimeter wave systems is proposed. The sensing strategy is inspired from synthetic aperture radar systems, and synthesizes a virtual array manifold vector using a single phased array over temporal measurements. The geometry of the virtual array can be controlled enabling synthesis of both a virtual uniform linear array (ULA) and a virtual sparse linear array starting from a large physical array. Moreover, the proposed sensing can be realized using conventional phased array/analog combiner. Several design parameters of the sensing scheme provide flexibility and are discussed including their impact on initial alignment. The proposed sensing approach allows for a rich set of options for inference. Candidate detection and estimation algorithms are presented and their performance is evaluated. 
                        more » 
                        « less   
                    
                            
                            Novel Active Sensing and Inference for mmWave Beam Alignment Using Single RF Chain Systems
                        
                    
    
            We propose a novel sensing approach for the beam alignment problem in millimeter wave systems using a single Radio Frequency (RF) chain. Conventionally, beam alignment using a single phased array involves comparing beamformer output power across different spatial regions. This incurs large training overhead due to the need to perform the beam scan operation. The proposed Synthesis of Virtual Array Manifold (SVAM) sensing methodology is inspired from synthetic aperture radar systems and realizes a virtual array geometry over temporal measurements. We demonstrate the benefits of SVAM using Cramer-Rao bound (CRB) analysis over schemes that repeat beam pattern to boost signal-to-noise (SNR) ratio. We also showcase versatile applicability of the proposed SVAM sensing by incorporating it within existing beam alignment procedures that assume perfect knowledge of the small-scale fading coefficient. We further consider the practical scenario wherein we estimate the fading coefficient and propose a novel beam alignment procedure based on efficient computation of an approximate posterior density on dominant path angle. We provide numerical experiments to study the impact of parameters involved in the procedure. The performance of the proposed sensing and beam alignment algorithm is empirically observed to approach the fading coefficient-perfectly known performance, even at low SNR. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10541828
- Publisher / Repository:
- arXiv.org
- Date Published:
- Subject(s) / Keyword(s):
- Single radio frequency chain virtual array manifold synthesis coherence interval active sensing direction of arrival hierarchical codebook Bayesian estimation
- Format(s):
- Medium: X
- Institution:
- arXiv.org
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Beam alignment is a critical aspect in millimeter wave (mm-wave) cellular systems. However, the inherent limitations of channel estimation result in beam alignment errors, which degrade the system performance. For systems with a large number of antennas at the base station, downlink channel estimation is performed using uplink pilot signals. The beam alignment errors, thus, depend on the user equipment (UE) transmit power, which needs to be managed properly as the UEs are battery powered. This paper investigates how the use of uplink power control for the transmission of pilot signals in a mm-wave network affects the downlink beam alignment errors, which depend on various link parameters. We use stochastic geometry and statistics of the Student's t -distribution to develop an analytical model, which captures the interplay between the uplink power control and downlink signal-to-noise ratio (SNR) coverage probability. Our results indicate that using uplink power control significantly reduces UE power consumption without adversely affecting the downlink SNR coverage.more » « less
- 
            Packet-level network simulators such as ns-3 require accurate physical (PHY) layer models for packet error rate (PER) for wideband transmission over fading wireless channels. To manage complexity and achieve practical runtimes, suitable link-to-system mappings can convert high fidelity PHY layer models for use by packet-level simulators. This work reports on two new contributions to the ns-3 Wi-Fi module, which presently only contains error models for Single Input Single Output (SISO), additive white Gaussian noise (AWGN) channels. To improve this, a complete implementation of a link-to-system mapping technique for IEEE 802.11 TGn fading channels is presented that involves a method for efficient generation of channel realizations within ns-3. The runtimes for the prior method suffers from scalability issues with increasing dimensionality of Multiple Input Multiple Output (MIMO) systems. We next propose a novel method to directly characterize the probability distribution of the"effective SNR" in link-to-system mapping. This approach is shown to require modest storage and not only reduces ns-3 runtime, it is also insensitive to growth of MIMO dimensionality. We describe the principles of this new method and provide details about its implementation, performance, and validation in ns-3.more » « less
- 
            In this paper, a novel 2D Nolen beamforming phased array with 3D scanning capability to achieve high channel capacity is presented for multiple-input multiple-output (MIMO) Internet-of-Things (IoT) applications. The proposed 2D beamforming phased array is designed by stacking a fundamental building block consisting of a 3 × 3 tunable Nolen matrix, which applies a small number of phase shifters with a small tunning range and reduces the complexity of the beam-steering control mechanism. Each 3 × 3 tunable Nolen matrix can achieve a full 360° range of progressive phase delay by exciting all three input ports, and nine individual radiation beams can be generated and continuously steered on azimuth and elevation planes by stacking up three tunable Nolen matrix in horizontal and three in vertical to maximize signal-to-noise ratio (SNR) in the corresponding spatial directions. To validate the proposed design, the simulations have been conducted on the circuit network and assessed in a fading channel environment. The simulation results agree well with the theoretical analysis, which demonstrates the capability of the proposed 2D Nolen beamforming phased array to realize high channel capacity in MIMO-enabled IoT communications.more » « less
- 
            Integrated sensing and communication (ISAC) is emerging as a key technique for next-generation wireless systems. In order to expedite the practical implementation of ISAC in pervasive mobile networks, it is crucial to have widely deployed base stations with radar sensing capabilities. Thus, the utilization of standardized multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) hardware architectures and waveforms is pivotal for realizing seamless integration of effective communication and sensing functionalities. In this paper, we introduce a novel joint anglerange- velocity estimation algorithm for MIMO-OFDM ISAC systems. This approach exclusively depends on the format of conventional MIMO-OFDM waveforms that are widely adopted in wireless communications. Specifically, the angle-range-velocity information of potential targets is jointly extracted by utilizing all the received echo signals within a coherent processing interval (CPI). The proposed joint estimation algorithm can achieve larger signal-to-noise-ratio (SNR) processing gains and higher resolution by fully exploiting the echo signals and jointly estimating the angle-range-velocity information. A theoretical analysis for maximum unambiguous range, resolution, and SNR processing gains is provided to verify the advantages of the proposed joint estimation algorithm. Finally, the results of extensive numerical experiments are presented to demonstrate that the proposed joint estimation approach can achieve significantly lower rootmean- square-error (RMSE) performance for angle/range/velocity estimation for both single- and multi-target scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    